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Abstract 

 

We propose and test the idea that investor perceptions exhibit volatility ‘after-effects’ 

whereby perceived volatility is distorted after prolonged exposure to extreme volatility 

levels. Using VIX to measure perceived volatility in S&P 500 stocks, we find evidence of 

significant perceptual distortions in the aftermath of volatility regimes, consistent with 

the after-effect theory and recent experimental evidence. These distortions are larger after 

both stronger and longer volatility regimes, and are absent after volatility changes that are 

not preceded by extreme volatility levels, consistent with the after-effect theory and 

inconsistent with alternative explanations. Our study shows that perceptual biases can 

have a significant distortionary effect on asset prices, even in very actively traded 

financial securities.  
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1. Introduction 

Conventional economic theory assumes no distortions in the way agents perceive 

realized asset returns. Yet, McFadden (1999) points out that perception errors are 

important and should be accounted for, as they explain many behavioral anomalies. Here 

we seek to follow this lead, by postulating and testing the presence of important 

distortions in investor perceptions of asset return volatility.  

 A large body of literature in neurophysiology has documented that after 

prolonged exposure to a stimulus, a perception bias subsequently emerges which creates 

the illusion of an opposite stimulus. This bias is called after-effect. For instance, after 

viewing a red square a gray square appears greenish (Hurvich and Jameson, 1957); after a 

few moments looking at the downward flow of a waterfall, the static rocks to the side 

appear to ooze upward (Barlow and Hill, 1963); and prolonged viewing of a male face 

makes subsequently seen androgyne faces appear more feminine than they normally 

would (Webster, Kaping, Mizokami, and Duhamel, 2004; Rutherford, Chattha, and 

Krysko, 2008). After-effects appear to be ubiquitous. They occur for stimuli of all stripes, 

running the gamut from simple stimuli to highly abstract properties such as the perceived 

numerosity of dots in patches (Burr and Ross, 2008). They also occur across different 

time horizons—some after-effects occur in the order of a few seconds whereas others 

have a daily or monthly horizons (Delahunt, Webster, Ma, and Werner, 2004; Webster, 

McDermott, and Bebis, 2007).  

On the theoretical side, Woodford (2012) proposes  that the after-effect 

phenomenon is only one instantiation of neuronal adaptation, the principle by which the 

brain maximizes accuracy of perceptions, subject to a limit on information-processing 

capacity.. Neuronal adaptation has two central properties: (1) diminishing sensitivity to 

value contrasts that are far away from the prior mean stimulus (the stimulus level that is 

expected to be encountered most often); (2) reset to the mean or reference-dependence, 

i.e., the brain perceives a given stimulus level with respect to the prior mean level, not the 

stimulus level itself.    As such, neuronal adaptation has two major implications for 

decision-making under uncertainty: (1) predicts the shape of the value function featured 

by Prospect Theory (Kahneman and Tversky, 1979), which has received much emphasis, 

and (2) predicts the after-effect phenomenon, which is the novel focus of this study.  
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 Inasmuch as after-effects appear to be not only ubiquitous but also necessary 

given our neurobiological constraints, it seems natural to postulate that they affect 

investor perceptions of asset return volatility. We therefore propose that investors 

perceive volatility to be lower than actual after prolonged exposure to high volatility 

levels, and higher than actual after prolonged exposure to low volatility levels. We 

further conjecture that this perception bias affects asset prices.  In this paper we provide 

strong evidence for this conjecture. 

 Recent experimental work documents the presence of strong volatility after-

effects in the laboratory. Payzan-LeNestour, Balleine, Berrada, and Pearson (2014) 

design a computer task that is a stylized version of what a trader experiences on a 

Bloomberg terminal. Task participants are shown a time-series representing trajectories 

of a stock market index over a year at a daily frequency. They are asked to report how 

volatile they perceive each trajectory. By design, the volatility of the test trajectory is 

always 10%. However, the task participants’ perceptions differ from 10% in a systematic 

way. Perceived volatility is 32% higher after prolonged (50 seconds) exposure to low 

volatility (2%) trajectories than after prolonged exposure to high volatility (45%) 

trajectories. Hence after-effects appear to distort perceptions of volatility in the 

laboratory. 

 What about in financial markets? Do such after-effects distort the VIX, which 

reflects investor forecasts of volatility? Our empirical evidence indicates the answer is a 

definite yes. After-effects significantly influence the VIX and thus underlying asset 

prices. This finding is not a foregone conclusion because although the average 

individual’s perception may be distorted, asset prices are determined by the marginal 

trader, who may well be sufficiently sophisticated so as to not suffer systematic 

perceptual distortions. 

 We focus on the change in VIX when transitioning from a state of either very low 

or very high volatility to a neutral volatility state (neither high nor low). We report that 

the part of the change in VIX that cannot be attributed to changes in either fundamentals 

or risk aversion levels, can however be attributed to the after-effect. To establish this, we 

construct a variable that equals +1 (-1) on the day that a prolonged high (low) volatility 

state reverts to a neutral level, and 0 at all other times. We find that this variable is a 
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significant determinant of changes in VIX. The change in VIX in the aftermath of a low 

volatility regime is higher than the corresponding change in the aftermath of a high 

volatility regime. The impact of a change of regime on VIX is as large as 3.5% or 76 bps 

(the same impact on VIX as a 1% change in the S&P 500, which is the most important 

predictor of change in VIX—more on this below). This finding is consistent with our 

conjecture that investors’ perception of volatility is higher in the aftermath of a prolonged 

period of very low volatility than in the aftermath of a prolonged period of very high 

volatility, all other things being equal.   

 Furthermore, the significance of our indicator variable increases linearly with the 

strength of the regimes, as it should if after-effects drive our results. It is maximal for 

regimes featuring extremely high or low levels of volatility, and nil for regimes in which 

the volatility levels do not depart markedly from the levels observed during the neutral 

states (around 13.5% on average in our data). That the magnitude of the effect increases 

linearly with the strength of the regimes conforms to what the after-effect theory predicts.      

 Additionally, we find that the significance of our indicator variable increases with 

the duration of the regimes (the exposure time to very high or low volatility levels). This 

again conforms to the after-effect theory. Experiments by psychologists have indeed 

documented that the magnitude of the after-effect builds up logarithmically with the 

duration of exposure to a given stimulus (Magnussen and Johnsen, 1986; Hershenson, 

1989; Leopold, Rhodes, Muller, and Jeffery, 2005).  

 Together these findings constitute strong evidence for our conjecture that 

perceptual after-effects bias the VIX. To our knowledge, no competing theory can 

explain the collection of empirical findings.  

             Importantly, our results are robust to assuming that the agents have adaptive 

expectations about the S&P500 volatility level. Our benchmark model assumes that the 

agents have rational expectations, which seems at odds with the growing body of 

evidence that investors have adaptive or extrapolative expectations (i.e., return forecasts 

are positively correlated with recent returns) and that these forecasts have implications 

for expected returns (see Greenwood and Shleifer, 2014; Barberis, Greenwood, Jin and 

Shleifer, 2015; Choi and Mertens, 2013). In fact, modifying our model to account for 
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potential extrapolative biases in the VIX strengthens the evidence for volatility after-

effects that we document here. We elaborate in Section 4.6 (Robustness Checks).   

 Finally, we provide evidence that the VIX distortions we document here are 

asymmetric. While the VIX exhibits an abnormal decrease in the aftermath of a high 

volatility regime, the corresponding VIX increase in the aftermath of a low volatility 

regime is not apparent in our data. We investigate this finding by revisiting the 

experimental findings of Payzan-LeNestour, Balleine, Berrada, and Pearson (2014). We 

run follow-up experimental sessions in the laboratory in which the volatility parameters 

are similar to those that we observe in the field (low volatility: 7% versus it was 2% in 

the original experimental sessions; neutral: 13.5% versus 10% in the original sessions; 

high volatility: 40% versus 45% in the original sessions). Quite strikingly, with those 

parameter values, the asymmetry that we observe in the field emerges in the laboratory as 

well.  

The absence of after-effects in the aftermath of low volatility regimes suggests 

that from a perceptual viewpoint, the levels of volatility that prevail during low volatility 

states (on average 7-9% in our data) do not markedly contrast with the intermediate levels 

that prevail during the transition states (13.5%). 

 The current study adds to the growing literature in behavioral finance. Prior 

behavioral finance studies have documented a number of behavioral biases such as 

limitations in the number of variables that agents can keep track of or pay attention to.1 

Here, we document a novel behavioral bias, which relates to how investor perceptions of 

volatility are distorted in the aftermath of volatility regimes.  Notably, we do not simply 

document that this perception bias exists among some individuals, but rather, we show 

that it has a meaningful impact on asset prices. As such, the current study adds to the 

literature that has shown that the presence of irrational noise traders can significantly 

affect stock prices.2 One distinctive trait of our study is that the bias we focus on here 

does not arise from a lack of intelligence in some agents; rather, it is a direct implication 

                                                        

1 See, among others, Simon (1955), Kahneman (1973), Huberman and Regev (2001), DellaVigna and 

Pollet (2009). 
2 See, among others, De Long, Shleifer, Summers, and Waldmann (1990), Lee, Shleifer and Thaler (1991), 

Shleifer and Vishny (1997), Froot and Dabora (1999), Barberis and Shleifer (2002), Mitchell, Pulvino and 

Stafford (2002), and Lamont and Thaler (2003). 
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of the way our perceptual system works and consequently it potentially affects all agents, 

including very sophisticated arbitrageurs.      

 The novel contribution of this study is to propose and test the idea that the 

presence of volatility regimes in itself may contribute to distorting asset prices as per the 

after-effects channel that we postulate. This idea builds on a large body of data from 

psychophysics and neurology on human perception in many sensory domains.  As such, 

the current study complements the neurologically grounded economics literature that 

proposes to augment conventional economic theory with consideration of the 

fundamental constraints imposed by our brains’ hardware (Glimcher, 2011; Woodford, 

2012).  

          As emphasized earlier, the foregoing neuroeconomics work has established that the 

after-effect phenomenon and the shape of the value function proposed by Prospect 

Theory are two different instantiations of the same neural principle—namely, neuronal 

adaptation. While the importance of Prospect Theory in our understanding of decision-

making under uncertainty has long been recognized, the current findings compellingly 

suggest that after-effects are of equal importance.  

The evidence of volatility after-effects in the laboratory leads us to test the 

presence of such perceptual after-effects in asset prices in the field. The results that 

emerge from the field study then lead us to run follow-up investigations in the laboratory. 

To our best knowledge, this approach, which involves going from laboratory data to field 

data and back to the laboratory, is novel in experimental finance. 

The rest of the paper is organized as follows. Section 2 explains the after-effect 

theory. Section 3 details the data and empirical strategy. Section 4 documents the main 

findings as well as robustness tests. Section 5 documents asymmetry in the after-effects 

that we identify and reports the main results of the follow-up laboratory experiment. 

Section 6 concludes. 

 

2. Theory 

To explain the phenomenon of after-effects, opponent-process theory (see, e.g., 

Hurvich and Jameson, 1957; Hering, 1964; Griggs, 2009) invokes antagonistic 

connectivity between pairs of neurons coding for alternative stimulus representations; for 
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example, pairs of motion-selective neurons coding for upward versus downward motions, 

pairs of face-selective neurons coding for happy versus sad face expressions or male 

versus female traits, pairs of color-selective neurons coding for red versus green, and so 

on. The after-effect follows from an imbalance among the pair of feature-selective 

neurons. Take for instance the two color representations red versus green. When viewing 

a red square the neurons coding for ‘red’ are strongly stimulated, while the competing 

neurons coding for ‘green’ are weakly stimulated (the square looks red). After a few 

moments of stimulation the neurons coding for ‘red’ show diminished responses, owing 

to a mechanism of synaptic depression named neuronal adaptation. When subsequently 

viewing an ambiguous (grey) square, the neurons signaling the red color are less 

stimulated than those signaling the green color, whereby the green perception 

spontaneously emerges to win the competition (the grey square looks greenish).  

 Neuronal adaptation reflects how neurons adjust to the mean stimulus level and 

perceive contrasts around the mean (Kandel, Schwartz, and Jessell, 2000). Such 

adjustment confers a number of functional advantages to the observer (e.g., Webster, 

McDermott, and Bebis, 2007; Woodford, 2012). Woodford (2012) shows the mechanism 

is actually optimal under neurobiological constraints on the degree of precision of 

people’s awareness of their environment.  Benefits of adaptation include maximizing the 

limited dynamic range available for visual coding and improving visual discrimination. 

For instance, visual sensitivity adjusts to the mean light level so that the exposure level 

remains at an appropriate level for perceiving the variations in light around the mean 

(Barlow, 1972). Adjusting to the mean stimulus level also allows differences around the 

mean to be more easily distinguished.3   

 Applying the after-effect theory to a financial decision context, we postulate that 

investors’ perception of variability in a broad sense—volatility of a time-series as well as 

variance of a sequence of numbers—involves a pair of variability-selective neurons. 

After prolonged exposure to low volatility levels, the neurons signaling low volatility 

would show diminished baseline activity relative to the competing neurons coding for 

                                                        

3 This process might underlie high-level perceptual judgments such as the other race effect (Eysenck and 

Keane, 2013) in face perception, in which we can readily discriminate differences between faces within the 

ethnic group we are exposed to while faces drawn from novel groups appear similar (Webster, McDermott, 

and Bebis, 2007).  
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high volatility. This imbalance would result in subsequent neutral volatility levels (the 

counterpart of the grey square in the previous example) looking more volatile than they 

truly are. Likewise, the neurons signaling high volatility would be relatively depressed 

after being overstimulated in a high volatility regime, resulting in investors perceiving 

neutral volatility levels as less volatile than they are. The theory therefore predicts that 

perceived volatility is biased downward (upward) in the aftermath of prolonged exposure 

to high volatility (low volatility). Figure 1 illustrates this prediction. Notably, standard 

behavioral theories predict the opposite perception bias. In particular, under adaptive 

expectations (expectations are adjusted by a fraction of the prediction error—the 

difference between the predicted and realized volatility) and anchoring (making 

insufficient adjustments from a reference point, which could be the previous volatility 

level), VIX is distorted upward (resp. downward) in the aftermath of a high (resp. low) 

volatility regime.  

 

< Figure 1 here > 

 

 As stressed in the Introduction, several studies document that the magnitude of 

the after-effect increases with both the intensity of the stimulus to which the agent is 

exposed to during the adaptation phase as well as the duration of this stimulus. In light of 

this, we predict that volatility after-effects depend on both the strength and duration of 

the volatility regimes. The more extreme and the longer the regime, the stronger the 

neuronal adaptation and hence the larger the after-effect. Finally, after-effects theory does 

not predict a perception bias when transitioning from a neutral state to a state of very high 

or very low volatility. Thus, we do not expect to see any perception bias when volatility 

jumps to a very high or very low level after having been at a neutral level for a prolonged 

period of time.  

 

3. Empirical methods 

3.1 Data 

To test our theory we use data on the S&P 500 cash index and VIX index values 

for the period January 2, 1996 to May 31, 2014. Our key variable of interest is VIX 
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squared (the one-month variance forecast for the cash index),4 or more precisely, changes 

in VIX squared, i.e., VIX squared first difference. The logic is that contrary to VIX 

squared, which reflects not only the variance currently perceived by the agents but many 

other variables such as forecast errors and variance risk premium, changes in VIX 

squared are mainly driven by contemporaneous changes in the variance perceived by the 

agents. (We show this formally below). So, if perceived variance is biased following a 

period of prolonged extreme variance, as per the foregoing after-effect, VIX squared first 

difference should directly exhibit this bias. The Internet Appendix contains further details 

on the raw data and various cleaning procedures.5 

 

3.2 Estimation of realized volatility  

To estimate volatility, we use the Zhang, Mykland, and Aït-Sahalia (2005) multi-

grid estimator, which provides a good compromise between accuracy and simplicity. It is 

more accurate than the Andersen, Bollerslev, Diebold, and Labys (2000) low frequency 

estimator, which is commonly used in the literature, yet its implementation is relatively 

simple. Its higher accuracy stems from the fact that it utilizes multiple sampling grids, 

effectively averaging out much of the measurement error contained in estimates derived 

from a single grid. Denote the log S&P 500 index value by 𝑝. A daily interval [𝑡 − 1, 𝑡] 

consists of 𝑁 tick-by-tick observations {𝑡0, 𝑡1, … 𝑡𝑁}. The multi-grid estimator of daily 

realized variance with 𝐾 grids results from the summation of squared 𝐾-period-returns:  

  𝑅𝑉𝑡−1,𝑡
2 =

1

𝐾
∑ [𝑝(𝑡𝑖+𝐾) − 𝑝(𝑡𝑖)]2 𝑁−𝐾

𝑖=0 .               (1) 

We select 𝐾, the sampling frequency of returns, using variance signature plots 

following Andersen, Bollerslev, Diebold, and Labys (2000).6 The optimal 𝐾 depends on 

the degree of trading activity, among other factors, which changes substantially through 

                                                        

4  VIX, formally the Chicago Board Options Exchange Market Volatility Index, is an estimate of the 

implied volatility of the S&P 500 index over the next 30 days.  As inputs to the calculation, VIX takes the 

market prices of the all out-of-the-money call and put options for the front and second-to-front expiration 

months.  VIX is computed as the option price implied par variance swap rate for a 30-day variance swap 

(using a kernel-smoothed estimator), and expressed as an annualized standard deviation (volatility) in 

percentage points by taking the square root of the variance swap rate. 
5 The Internet Appendix can be found at http://ow.ly/He7v0 . 
6 To determine the optimal sampling frequency we use the volatility signature tool instead of other common 

techniques (e.g., Zhang, Mykland, and Aït-Sahalia, 2005; Bandi and Russell, 2006).  This is because the 

common techniques assume negative first order autocorrelation of returns, whereas the S&P 500 cash index 

returns exhibit positive autocorrelation, as we document in the Internet Appendix.  

http://ow.ly/He7v0
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time from the start to the end of our 18-year sample. We therefore use three different 

sampling frequencies (ten, five and three minutes) in three different time periods, 

increasing the frequency in line with trading activity. See the Internet Appendix for 

details.  

After computing 𝑅𝑉𝑡−1,𝑡
2  at the optimal frequency 𝐾∗ , we calculate realized 

volatility for the daily interval [𝑡 − 1, 𝑡]  by taking the square root of 𝑅𝑉𝑡−1,𝑡
2  and 

annualizing using a year of 252 business days: 

𝑅𝑉𝑡−1,𝑡
 = √𝑅𝑉𝑡−1,𝑡

2 × 252 .     (2) 

To simplify notation, we refer to realized variance and realized volatility for the 

daily interval [𝑡 − 1, 𝑡] with a single time subscript corresponding to the end of the daily 

interval, 𝑅𝑉𝑡
2  and 𝑅𝑉𝑡

 . In the Internet Appendix, we provide detailed descriptive statistics 

for realized volatility 𝑅𝑉𝑡
 , its log 𝐿𝑛𝑅𝑉𝑡

 , and its first difference, ∆𝑅𝑉𝑡
 . We also provide 

descriptive statistics for the VIX and VIX first difference series. Among other things, we 

document that the log realized volatility appears to be close to normally distributed, a 

result discussed by Andersen, Bollerslev Diebold, and Labys (2000, 2001, 2003). We 

also find that the structure of realized volatility autocorrelation is typical of a long-

memory process. Fitting a HAR model to the daily realized variance series we find 

coefficients that are very close to those found in prior studies (e.g., Corsi, 2009). Similar 

to realized volatility, the autocorrelation structure of the daily VIX series is typical of a 

long-memory process. By contrast, VIX and realized volatility first differences are not 

persistent. Their autocorrelation is not significant beyond the first lag. This result is 

consistent with earlier studies (Fleming, Ostdiek, and Whaley, 1995; Carr and Wu, 2006; 

Ahoniemi, 2008). See the Internet Appendix for details.  

 

3.3 Identification of the volatility regimes that induce after-effects  

To identify episodes in which after-effects are likely to be triggered, we must first 

identify very high, very low and neutral volatility states. To do this, we start by 

computing the mean and standard deviation of the distribution of the daily log realized 

volatility, during a rolling three-month (63 business days) window. Our motivation for 

using the log realized volatility (rather than realized volatility) is that it appears to be 
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approximately normally distributed, as pointed out above. Furthermore, the volatility of 

the log realized volatility shows little persistence (Corsi, Mittnik, Pigorsch, and Pigorsch, 

2008).  

We define a very high (𝑉𝐻) volatility level as one that is more than 𝑥 standard 

deviations above the mean, and a very low (𝑉𝐿) volatility level as one that is more than 𝑥 

standard deviations below the mean. A medium or neutral volatility level (𝑀) is one that 

falls within 𝑦 standard deviations of the mean.7 

We refer to episodes that, according to theory, are likely to trigger after-effects as 

volatility ‘regimes’. Our volatility regime indicator variable, 𝑉𝑜𝑙𝑅𝑒𝑔𝑡, is defined over a 

four-day period. Specifically, 𝑉𝑜𝑙𝑅𝑒𝑔𝑡  takes a value of 1 if we observe very high 

volatility levels in the three preceding days (‘high volatility state’) and day 𝑡 has a neutral 

volatility level. 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 takes the value -1 if we observe very low volatility levels in the 

three preceding days (‘low volatility state’) and day 𝑡  has a neutral volatility level. 

𝑉𝑜𝑙𝑅𝑒𝑔𝑡 is 0 in all other instances. Formally:  

 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 = {
+1    if  {𝐿𝑛𝑅𝑉𝑡−3, 𝐿𝑛𝑅𝑉𝑡−2, 𝐿𝑛𝑅𝑉𝑡−1, 𝐿𝑛𝑅𝑉𝑡} = {𝑉𝐻, 𝑉𝐻, 𝑉𝐻, 𝑀}

−1    if  {𝐿𝑛𝑅𝑉𝑡−3, 𝐿𝑛𝑅𝑉𝑡−2, 𝐿𝑛𝑅𝑉𝑡−1, 𝐿𝑛𝑅𝑉𝑡} = {𝑉𝐿, 𝑉𝐿, 𝑉𝐿, 𝑀}   
0     otherwise                                                                                        

,      (3) 

where 𝐿𝑛𝑅𝑉𝑡  is log realized volatility on day 𝑡 . The identification of volatility states 

(very high, very low and neutral) and regimes (transitions from very high or very low to 

neutral volatility) is illustrated in Figure 2. 

 

< Figure 2 here > 

 

Note that volatility regimes (𝑉𝑜𝑙𝑅𝑒𝑔𝑡 = ±1) can involve very high or very low 

realized volatility that persists for more than three days before transitioning to the neutral 

level. We calibrate 𝑥  and 𝑦 to ensure that in the analysis there is a sufficiently large 

number of regimes (from a statistical viewpoint), while significantly separating the 

                                                        

7 We choose to use symmetrical intervals because the distribution is approximately symmetrical (see the 

Internet Appendix). We use five buckets to avoid threshold effects happening when volatility has been in 

the highest or lowest bucket and a small change brings it into the adjacent middle bucket. Setting 𝑥 = 𝑦 

collapses the five buckets into three adjacent ones. 
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volatility states in the sense that the level of volatility in states 𝑉𝐻 and 𝑉𝐿 is sufficiently 

different from that in the neutral state, 𝑀.  

After removing the first three months of the sample used in the rolling window 

that determines high/low/neutral levels, we are left with 4,539 daily observations. When 

𝑥 = 𝑦 = 1, there are about 100 volatility regimes (transitions from very high or very low 

volatility states to the neutral state) over the whole sample 1996-2014. Figure 3 illustrates 

the temporal distribution of volatility regimes for 𝑥 = 𝑦 = 1. Regimes occur regularly 

throughout the sample with some evidence of clustering, for example, during the second 

semester of 2009. Table 1 reports the number of regimes for a range of 𝑥 and 𝑦 between 

1.00 and 1.75 standard deviations.  

 

< Figure 3 here > 

< Table 1 here > 

 

In the main analysis we use volatility states that are relatively close to each other 

because when 𝑥 − 𝑦 is very large (i.e., when the difference between the volatility levels 

in the very high/low states and the neutral state is large—the ideal scenario to detect the 

after-effect if any), the number of regimes is too low from a statistical viewpoint.8  

 Table 2 reports the absolute difference between the average log realized volatility 

at the onset of a neutral state and the average log realized volatility over the previous 

three days, for different values of 𝑥 and 𝑦. The difference increases with the strength of 

the stimulus (𝑥) and it decreases with the threshold that defines a neutral volatility level 

(𝑦). The average jump from either a very high or very low volatility state to a neutral 

volatility state is 0.42 in log terms (about 40% in realized volatility terms).  

 

< Table 2 here > 

 

                                                        

8 This is not surprising: our regime indicator is defined over four days and we have 4,539 days in the 

sample. So we have a maximum of 1,135 non-zero values. To get a non-zero value, realized volatility has 

to stay in the tail of the distribution for three days in a row before jumping. This is an unlikely path (albeit 

it is possible given the persistent nature of realized volatility and the presence of jumps). 
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3.4 Structural model 

The after-effect theory predicts that the VIX, a model-free measure of volatility 

expectations is impacted by a systematic perception error in the aftermath of a volatility 

regime. Changes in the VIX are mainly driven by changes in expected future volatility, 

which in turn are driven by the volatility perceived by the agent. Normally, those changes 

in perceived volatility mirror corresponding changes in the level of realized volatility 

except in the aftermath of prolonged exposure to very high or very low volatility. To see 

this formally, we write a structural model that assumes rational expectations but allows 

for a perceptual bias due to after-effects.  In the Internet Appendix we investigate an 

alternative assumption of adaptive expectations and show that assuming adaptive 

expectations would merely strengthen our evidence for the existence of an after-effect in 

volatility perception. 

VIX squared is the price of a synthetic variance swap9, which is the sum of 

expected realized variance and a variance risk premium as in Carr and Wu (2006): 

 𝑉𝐼𝑋𝑡
2 = 𝐸𝑡

 [𝑅𝑉𝑡,𝑡+30
2 ] + 𝑉𝑅𝑃𝑡,                (4) 

By differencing, we obtain: 

                   ∆𝑉𝐼𝑋𝑡
2 = 𝑉𝐼𝑋𝑡

2 − 𝑉𝐼𝑋𝑡−1
2  

  = 𝐸𝑡
 [𝑅𝑉𝑡,𝑡+30

2 ] − 𝐸𝑡−1
  [𝑅𝑉𝑡−1,𝑡+29

2 ] + ∆𝑉𝑅𝑃𝑡.              (5) 

In forming expectations about future variance, a rational agent is likely to use (either 

explicitly or implicitly) a variance forecasting model that has the highest possible 

forecasting accuracy. A model that fits that criterion is the popular HAR model used in 

Andersen, Bollerslev and Diebold (2007).11 While being quite simple, this model together 

with related models such as ARFIMA has excellent forecasting performance, beating 

competing models such as the ARCH family of models (e.g., Corsi, 2009). One-week and 

one-month realized variances are given by the following: 

 𝑅𝑉𝑡,𝑡+7
2 =

1

7
(𝑅𝑉𝑡,𝑡+1

2 + 𝑅𝑉𝑡+1,𝑡+2
2 + ⋯ + 𝑅𝑉𝑡+6,𝑡+7

2 ).               (6) 

                                                        

9 VIX is quoted as an annualized standard deviation, so VIX squared is annualized risk-neutral expected 

variance.  
11 Specifically, we use equation 11 of Andersen, Bollerslev and Diebold (2007). The reader will note that 

here we use variance instead of volatility and calendar instead of business days. Despite their simplicity, 

HAR models capture the two most important empirical characteristics of volatility: volatility clustering and 

long memory (e.g., Corsi, 2009).  
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 𝑅𝑉𝑡,𝑡+30
2 =

1

30
(𝑅𝑉𝑡,𝑡+1

2 + 𝑅𝑉𝑡+1,𝑡+2
2 + ⋯ + 𝑅𝑉𝑡+29,𝑡+30

2 ).              (7) 

The HAR model for monthly variance is: 

 𝑅𝑉𝑡,𝑡+30
2 = 𝛽0 + 𝛽𝐷 𝑅𝑉𝑡−1,𝑡

2 +
𝛽𝑊

7
 𝑅𝑉𝑡−7,𝑡

2 +
𝛽𝑀

30
 𝑅𝑉𝑡−30,𝑡

2 + 𝜖𝑡,𝑡+30.      (8) 

This gives (rewriting the difference of expectations in (5)): 

 𝐸𝑡
𝑃[𝑅𝑉𝑡,𝑡+30

2 ] − 𝐸𝑡−1
𝑃 [𝑅𝑉𝑡−1,𝑡+29

2 ] = 𝛽𝐷 𝑅𝑉𝑡−1,𝑡
2 +

𝛽𝑊

7
 𝑅𝑉𝑡−7,𝑡

2 +
𝛽𝑀

30
 𝑅𝑉𝑡−30,𝑡

2  

    −(𝛽𝐷 𝑅𝑉𝑡−2,𝑡−1
2 +

𝛽𝑊

7
 𝑅𝑉𝑡−8,𝑡−1

2 +
𝛽𝑀

30
 𝑅𝑉𝑡−31,𝑡−1

2 ) 

    = 𝛽𝐷(𝑅𝑉𝑡−1,𝑡
2 − 𝑅𝑉𝑡−2,𝑡−1

2 ) 

    +
𝛽𝑊

7
( 𝑅𝑉𝑡−1,𝑡

2 − 𝑅𝑉𝑡−8,𝑡−7
2 ) 

    +
𝛽𝑀

30
(𝑅𝑉𝑡−1,𝑡

2 −  𝑅𝑉𝑡−31,𝑡−30
2 ).                     (9) 

From the estimated HAR coefficients for S&P 500 realized variance (Table IIb of 

Andersen, Bollerslev and Diebold (2007) and our own estimated coefficients in Table 8 

of the Internet Appendix), one can see that the coefficients 𝛽𝑊  and 𝛽𝑀 are both quite 

small (around 0.3), which means that the difference in expectation is mainly driven by the 

first term, the change in realized variance over [𝑡 − 1, 𝑡]: 

𝐸𝑡
 [𝑅𝑉𝑡,𝑡+30

2 ] − 𝐸𝑡−1
 [𝑅𝑉𝑡−1,𝑡+29

2 ] ≈ 𝛽𝐷(𝑅𝑉𝑡−1,𝑡
2 − 𝑅𝑉𝑡−2,𝑡−1

2 ) = 𝛽𝐷 ∆𝑅𝑉𝑡
2.     (10) 

Substituting (10) into (5), we thus have: 

 ∆𝑉𝐼𝑋𝑡
2 ≈ 𝛽𝐷 ∆𝑅𝑉𝑡

2 + ∆𝑉𝑅𝑃𝑡.               (11) 

According to the after-effect theory described above, after a very high or very low 

volatility regime, perceived variance will differ from actual by a perception error. Using 

subscipt 𝜋 for perceived variance and 𝑃𝐸 for the perception error, we have: 

𝑅𝑉𝜋,𝑡
2 = {

𝑅𝑉𝑡
2 − 𝑃𝐸,     after a high volatility regime

𝑅𝑉𝑡
2 + 𝑃𝐸,      after a low volatility regime

𝑅𝑉𝑡
2 ,                                                  otherwise

          (12) 

More formally, using the definitions of volatility regimes and 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 variable, we have: 

{𝑅𝑉𝜋,𝑡−3
2 , 𝑅𝑉𝜋,𝑡−2

2 , 𝑅𝑉𝜋,𝑡−1
2 , 𝑅𝑉𝜋,𝑡

2  } = {

{𝑅𝑉𝑡−3
2 , 𝑅𝑉𝑡−2

2 , 𝑅𝑉𝑡−1
2 , 𝑅𝑉𝑡

2 − 𝑃𝐸}     if  𝑉𝑜𝑙𝑅𝑒𝑔𝑡 = +1    

{𝑅𝑉𝑡−3
2 , 𝑅𝑉𝑡−2

2 , 𝑅𝑉𝑡−1
2 , 𝑅𝑉𝑡

2 + 𝑃𝐸}     if  𝑉𝑜𝑙𝑅𝑒𝑔𝑡 = −1    

{𝑅𝑉𝑡−3
2 , 𝑅𝑉𝑡−2

2 , 𝑅𝑉𝑡−1
2 , 𝑅𝑉𝑡

2}                if  𝑉𝑜𝑙𝑅𝑒𝑔𝑡 = 0       

. 

(13) 

This leads to: 
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 𝑅𝑉𝜋,𝑡
2 = 𝑅𝑉𝑡

2 − 𝑃𝐸. 𝑉𝑜𝑙𝑅𝑒𝑔𝑡,              (14) 

and 

 ∆𝑅𝑉𝜋,𝑡
2 = ∆𝑅𝑉𝑡

2 − 𝑃𝐸. 𝑉𝑜𝑙𝑅𝑒𝑔𝑡.             (15) 

We therefore incorporate the after-effect bias into equation (11) by rewriting it using 

equation (15):  

 ∆𝑉𝐼𝑋𝑡
2 ≈ 𝛽𝐷 ∆𝑅𝑉𝜋,𝑡

2 + ∆𝑉𝑅𝑃𝑡                            

               ≈ 𝛽𝐷 ∆𝑅𝑉𝑡
2 − 𝛽𝐷𝑃𝐸. 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 + ∆𝑉𝑅𝑃𝑡.        (16) 

 Our strategy is thus to regress changes in VIX squared onto changes in realized 

variance and the 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 variable. Following Merton’s (1980) arguments, the variance 

risk premium is slow-moving; Bollerslev, Gibson, and Zhou (2011) find that it varies 

with the business cycle. For this reason, the third term in (16), ∆𝑉𝑅𝑃𝑡 , should be 

negligible. One may deem the Mertonian assumption too strong though, in which case it 

is advisable to augment the regression with control variables for ∆𝑉𝑅𝑃𝑡. We test both 

specifications of the model and the results appear to be robust to the inclusion of a variety 

of control variables. We also conduct ‘placebo’ tests (described in Section 4.4), which 

address the concern that large jumps in volatility (such as those captured by 𝑉𝑜𝑙𝑅𝑒𝑔𝑡) 

may impact VIX via changes in the variance-risk premium. 

 Equation (16) makes it clear that changes in 𝑉𝐼𝑋𝑡
2 mainly depend on the changes 

of perceived variance over the period [𝑡 − 1, 𝑡] and not on the higher order lags. That the 

𝑉𝐼𝑋𝑡
2 first difference is mainly driven by contamporaneous changes in the variance level 

perceived by the agents justifies that we use it in the analysis instead of using the level of 

VIX. Using the latter would not work given our purpose here; if we were to use it, 

monthly variations in important VIX factors such as the degree of risk aversion would 

potentially cloud the perceptual after-effect that we are looking for. 

 It should also be noted that the VIX first difference time series features low 

persistence (as documented in prior empirical work—and we verify that this is true in our 

data as well). As such it is a suitable dependent variable in the analysis contrary to VIX, 

which is highly persistent.13 

 

                                                        

13 Granger and Joyeux (1980) show that one cannot infer much from a regression in which the dependent 

variable is highly persistent. 
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3.5 Regression strategy 

We use a log specification of (16) as the logs of VIX and logs of realized 

volatility are approximately normally distributed, as pointed out earlier.14 In robustness 

tests we find similar results, in some cases even stronger, under alternative specifications 

including not logged series. The benchmark form of our regression is thus:15 

 ∆𝐿𝑛𝑉𝐼𝑋𝑡 = 𝛼 + 𝛽 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 + 𝛾 ∆𝐿𝑛𝑅𝑉𝑡 + 𝜀𝑡.            (17) 

We estimate this benchmark regression and then augment it by adding control variables 

one at a time. Among the control variables, we include the market return during the 

transition period (𝑟𝑡) as a proxy for changes in the variance risk premium (∆𝑉𝑅𝑃𝑡  in 

equation (16)). We also include negative market returns (𝑟𝑡
− = min (𝑟𝑡, 0)) to account for 

possible leverage effects. We include first lags of realized volatility and VIX first 

differences since the two series display significant auto-correlation (as described earlier). 

Finally, we include dummy variables for the well-known day-of-the-week effect in VIX 

(Fleming, Ostdiek, and Whaley, 1995). The regression with the complete set of control 

variables is thus:  

 ∆𝐿𝑛𝑉𝐼𝑋𝑡 = 𝛼 + 𝛽 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 + 𝛾0 ∆𝐿𝑛𝑅𝑉𝑡 + 𝛾1 ∆𝐿𝑛𝑅𝑉𝑡−1 + 𝛿 𝑟𝑡 + 𝛿− 𝑟𝑡
−  

   +𝜌1 ∆𝐿𝑛𝑉𝐼𝑋𝑡−1 + ∑ 𝜃𝑖𝐷𝑖𝑡 + 𝜀𝑡
5
𝑖=2 ,              (18) 

where {𝐷𝑖𝑡}𝑖=2,3,4,5 are dummy variables for Tuesday to Friday (Monday is base case).  

 

4. Results 

4.1 Impact of a regime change on VIX  

We find that the impact of a change of regime on VIX is significant, as predicted 

by after-effects theory. Table 3 column (1) reports estimates from the baseline regression 

(17) using threshold parameters 𝑥 = 1.75 and 𝑦 = 1.50 (a compromise that ensures a 

sufficiently large number of regimes and sufficiently large difference between the 

volatility states). The impact of 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 on changes in VIX has a sign that is consistent 

with volatility after-effects, and is statistically significant. The economic impact of 

                                                        

14 We multiply the log difference by 100 to make it consistent with the definition of S&P 500 returns.  
15 In logging the series, the squares become linear terms, with the factor of two being absorbed into the 

corresponding coefficients and regression intercept.  
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𝑉𝑜𝑙𝑅𝑒𝑔𝑡  is large: a transition from a very high or very low volatility state to neutral 

volatility changes VIX by about 2.73%.  

We augment the baseline regression with a number of control variables. The 

coefficient of the key variable, 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 , is hardly affected by the additional control 

variables. Column (2) reports the results of the regression with S&P 500 returns and 

negative returns added as control variables that correlate with changes in the variance risk 

premium. Both return variables are highly significant both statistically and economically: 

a +1% S&P 500 return is associated with a 3.31% drop in VIX. There is asymmetry in 

the impact of returns confirming results found in previous literature: a 1% increase in 

S&P 500 decreases VIX by 2.41% while a 1% decrease increases VIX by 4.20%. 

Including the S&P 500 returns significantly increases the R2 of the regression: realized 

volatility differences and S&P 500 returns explain close to 60% of the variation in VIX 

first differences. Most importantly, the coefficient of our main variable of interest, 

𝑉𝑜𝑙𝑅𝑒𝑔𝑡, hardly changes compared to its estimate in the baseline regression. 

In column (3) the regression includes lagged VIX difference and lagged realized 

volatility differences. The coefficient of lagged VIX differences is significant and large. 

Finally, column (4) reports the results of the regression that includes day-of-the-week 

dummies. All of the day-of-the-week dummies are significant, which indicates daily 

seasonality in VIX, consistent with existing literature. The coefficient of  𝑉𝑜𝑙𝑅𝑒𝑔𝑡  is 

remarkably stable across the four regressions. It always has the sign that is consistent 

with predictions based on after-effects theory and is statistically significant.  

 

< Table 3 here > 

 

4.2 Impact of a regime change on VIX as a function of regime strength 

We now turn to examining some of the more nuanced predictions of after-effects 

theory. We find that the more extreme the volatility levels during the adaptation phase 

(the three days preceding a transition to neutral volatility), the more significant our 

volatility regime variable, suggesting a stronger after-effect. Table 4 reports the estimated 

coefficients and significance of 𝑉𝑜𝑙𝑅𝑒𝑔𝑡  in regression (18) for different values of 𝑥 

(which determines the volatility levels during the stimulus phase) and 𝑦  (which 
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determines the volatility levels in the neutral state). In all cases the estimated coefficient 

of 𝑉𝑜𝑙𝑅𝑒𝑔𝑡  is negative and statistically significant, consistent with the presence of 

volatility after-effects.16  The largest coefficient is 3.572, which implies an effect size that 

is of the same order of magnitude as the impact of S&P 500 returns in the regression. Put 

differently, depending on the strength of the volatility stimulus, the impact of the after-

effect on VIX can be about the same as the impact of a 1% change in S&P 500.  

 

< Table 4 here > 

 

Figure 4 displays the coefficient of 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 as a function of the level of (log) 

realized volatility in the adaptation phase along the diagonal of Table 4 (i.e., when 𝑥 =

𝑦). We see a steady increase in the size of the after-effect as the average level of realized 

volatility in the adaptation phase increases. This finding is consistent with our theoretical 

prediction that the more extreme the volatility during the adaptation period, the stronger 

the neuronal adaptation and hence the larger the after-effect. 

 

< Figure 4 here > 

 

4.3 Impact of regime change on VIX as a function of stimulus duration 

After-effects theory also predicts that the longer the exposure to the stimulus, the 

stronger the after-effect. Our tests in this subsection support this prediction: the longer the 

stimulus phase, the more significant the perception bias. To establish this we modify 

𝑉𝑜𝑙𝑅𝑒𝑔𝑡 so that the adaptation period spans two days, three days or five days.17 

The after-effect increases with the number of days in the adaptation window. For 

the threshold values 𝑥 = 1.50 and 𝑦 = 1.25 for instance, the estimated coefficients on 

the 𝑉𝑜𝑙𝑅𝑒𝑔𝑡  variable are: 1.723, 2.439 and 3.592 for two-day, three-day and five-day 

adaptation windows. This finding is consistent with the prediction that the longer the 

                                                        

16 The coefficients of the control variables are virtually unchanged for the different values of 𝑥 and 𝑦. 
17 In the Internet Appendix, we document that there are fewer ‘transitions’ using a three-day adaptation 

window than a two-day window and even fewer when using a five-day window (as one would expect). The 

absolute differences between the volatility level in the very high / very low state compared to the neutral 

state are almost identical when using the two-day and three-day adaptation windows. The absolute 

differences are slightly larger with the five-day windows. 
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adaptation period (the time spent in a very high or very low volatility state) the stronger 

the neuronal adaptation and hence the larger the after-effect in the neutral state.   

 

< Figure 5 here > 

 

4.4 Transition from neutral to very high or very low volatility states 

While our results so far are consistent with the predictions of perceptual after-

effects, a competing explanation is related to the fact that the 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 variable measures 

large jumps in realized volatility. It could be that agents have adaptive expectations about 

volatility changes: after seeing an increase (resp. decrease) in realized volatility, they 

expect a further increase (resp. decrease). According to that theory, immediately after 

transitioning from a high (resp. low) volatility state to a neutral state, the agent expects 

volatility to further decrease (resp. increase). Consequently, the agent revises his 

expectation of 30-day future volatility downward (resp. upward), causing a negative 

(resp. positive) change in VIX. The negative (resp. positive) changes in VIX coincide 

with 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 = +1  (resp. 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 = −1 ) and therefore if agents have adaptive 

expectations of volatility changes we would expect 𝛽 < 0 in our main regression, which 

is consistent with our results. 

To tease apart the after-effect and adaptive expectations theories, we construct a 

‘placebo’ test in which we modify our volatility regime indicator variable so that similar 

to the original definition it measures jumps between adjacent volatility states after a 

period of stability in volatility levels, but unlike the original definition the jumps are not 

predicted to cause perceptual after-effects. According to the after-effect theory, there 

should be no after-effect when realized volatility jumps from a neutral state to a very high 

or very low volatility state. In contrast, the adaptive expectations theory predicts a bias in 

VIX when realized volatility jumps from a neutral state to a very high or very low 

volatility state. 

To perform our placebo test, we modify our volatility regime indicator variable as 

follows: 

𝑀𝑜𝑑𝑉𝑜𝑙𝑅𝑒𝑔𝑡 = {
+1    if  {𝐿𝑛𝑅𝑉𝑡−3, 𝐿𝑛𝑅𝑉𝑡−2, 𝐿𝑛𝑅𝑉𝑡−1, 𝐿𝑛𝑅𝑉𝑡} = {𝑀, 𝑀, 𝑀, 𝑉𝐻}

−1    if  {𝐿𝑛𝑅𝑉𝑡−3, 𝐿𝑛𝑅𝑉𝑡−2, 𝐿𝑛𝑅𝑉𝑡−1, 𝐿𝑛𝑅𝑉𝑡} = {𝑀, 𝑀, 𝑀, 𝑉𝐿} 
0     otherwise                                                                                     

.  (19) 
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Table 5 shows the number of transitions from the neutral volatility state to the 

very high or very low state. There are a lot more transitions than before. This is because it 

is more likely that volatility will stay in a neutral state three days in a row and jump to a 

very high or very low state than it is that it will stay in a very high or very low state three 

days in a row and jump to a neutral state. Table 6 displays the absolute difference 

between the average log realized volatility in the neutral state and the average log 

realized volatility in the very high or very low volatility states. The values are similar to 

those found in Table 2.  

 

< Table 5 here > 

< Table 6 here > 

 

Table 7 reports estimated coefficients of the modified volatility regime variable in 

regression (18) (replacing 𝑉𝑜𝑙𝑅𝑒𝑔𝑡  with 𝑀𝑜𝑑𝑉𝑜𝑙𝑅𝑒𝑔𝑡  in the regression). As the after-

effects theory predicts, there is no effect for transitions from a neutral state to a very high 

or very low volatility state: the coefficients are small and none of them are statistically 

significant.  This finding suggests that it is not large changes in volatility per se that drive 

changes or bias in VIX, but only those changes that take a specific form, namely a 

transition from prolonged very high/low volatility to neutral volatility.  Such evidence 

rules out the aforementioned adaptive expectations explanation for the underlying 

mechanism that drives our results.   

 

< Table 7 here > 

 

4.5 No transition in volatility 

          The neuronal adaptation mechanism described in Section 2 suggests that perceived 

volatility (and thus the level of VIX) may slightly decrease (increase) toward the end of a 

prolonged high (low) volatility state as agents get used to the extreme volatility level. 

Practitioners often refer to this effect as ‘reset of the mean’. If present, the phenomenon 

may potentially cloud our identification of the after-effects that are the focus of this 

study. We expect reset-of-the-mean, if present, to be a second-order phenomenon 
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compared to the strength of after-effects (which is why we do not account for it in the 

outline of the theory illustrated in Figure 1).  

To test for the reset-of-the-mean effect, we define a new variable (𝑁𝑜𝑛𝑉𝑜𝑙𝑅𝑒𝑔𝑡) 

that, in contrast to 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 takes non-zero values when realized volatility stays in the 

same very high or very low state without transitioning to the neutral state. We vary the 

duration of the stimulus window from two to four days. For a four-day window, 

𝑁𝑜𝑛𝑉𝑜𝑙𝑅𝑒𝑔𝑡 is defined as: 

𝑁𝑜𝑛𝑉𝑜𝑙𝑅𝑒𝑔𝑡 = {
+1    if  {𝐿𝑛𝑅𝑉𝑡−3, 𝐿𝑛𝑅𝑉𝑡−2, 𝐿𝑛𝑅𝑉𝑡−1, 𝐿𝑛𝑅𝑉𝑡} = {𝑉𝐻, 𝑉𝐻, 𝑉𝐻, 𝑉𝐻}

−1    if  {𝐿𝑛𝑅𝑉𝑡−3, 𝐿𝑛𝑅𝑉𝑡−2, 𝐿𝑛𝑅𝑉𝑡−1, 𝐿𝑛𝑅𝑉𝑡} = {𝑉𝐿, 𝑉𝐿, 𝑉𝐿, 𝑉𝐿}   
0     otherwise                                                                                         

. (20)                 

Table 8 reports the coefficients of 𝑁𝑜𝑛𝑉𝑜𝑙𝑅𝑒𝑔𝑡  when it replaces 𝑉𝑜𝑙𝑅𝑒𝑔𝑡  in 

regression (18). The reset-of-the-mean effect predicts that the coefficient of 𝑁𝑜𝑛𝑉𝑜𝑙𝑅𝑒𝑔𝑡 

should be negative, i.e., prolonged exposure to very high volatility should cause 

perceived volatility to be lower than actual, and vice versa for very low volatility. The 

table reports the coefficient estimates of 𝑁𝑜𝑛𝑉𝑜𝑙𝑅𝑒𝑔𝑡  for different lengths of the 

adaptation window and different values of the threshold that defines the very high/low 

volatility states, 𝑥. The coefficient estimates are generally small negative values, which 

could indicate some adaptation to extreme volatility states, but they are neither 

statistically nor economically significant. This supports our modeling choice to neglect 

the reset-of-the-mean perceptual bias during extreme volatility states.  

 

< Table 8 here > 

 

4.6 Robustness checks 

The foregoing findings constitute strong evidence that investor perceptions of 

volatility are biased by after-effects. We run many robustness checks which we report in 

detail in the Internet Appendix A.5.  

First, we add additional control variables to the regressions. The key coefficient 

estimates barely change. Second, we use alternative specifications for the regression. For 

example, we use VIX and realized volatility in levels rather than in logs. Our main results 

are robust to this alternative specification. 



22 

Third, we check that use of a three-month window to calculate the volatility of 

realized volatility is not pivotal for our main results. We repeat the analysis using a six-

month window and find that even though the choice of the window has an impact on the 

volatility regime identification, the regression results are robust to the use of a different 

window. We further find that our results still hold when classifying volatility states (very 

high, very low, neutral) using percentiles of the realized volatility distribution, rather than 

fractions of standard deviations of the realized volatility distribution.  

Finally, we find that our results still hold when assuming that agents have 

adaptive expectations about volatility levels (rather than assuming rational expectations 

as in Section 3.4). In fact, the results are strengthened, i.e., the after-effect is actually 

stronger than the one reported in Section 4. Intuitively, this is because adaptive 

expectations and the after-effect phenomenon work as antagonistic forces, inasmuch as 

adaptive expectations about volatility levels push the VIX in the opposite direction to the 

after-effect. See Internet Appendix A.5.5 for a formal proof.  

 

5. Follow-up investigations 

5.1 Asymmetry of the after-effect in the field  

We investigate whether the after-effect is as strong when transitioning from a very 

high volatility state to a neutral state (henceforth, ‘post high’) as it is when transitioning 

from a very low volatility state to a neutral state (‘post low’). To that goal, we decompose 

our volatility regime variable 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 into the following two variables: 

𝑉𝑜𝑙𝑅𝑒𝑔𝑡
+ = {

+1    if  {𝐿𝑛𝑅𝑉𝑡−3, 𝐿𝑛𝑅𝑉𝑡−2, 𝐿𝑛𝑅𝑉𝑡−1, 𝐿𝑛𝑅𝑉𝑡} = {𝑉𝐻, 𝑉𝐻, 𝑉𝐻, 𝑀}

0     otherwise                                                                                         
,    (21) 

𝑉𝑜𝑙𝑅𝑒𝑔𝑡
− = {

−1    if  {𝐿𝑛𝑅𝑉𝑡−3, 𝐿𝑛𝑅𝑉𝑡−2, 𝐿𝑛𝑅𝑉𝑡−1, 𝐿𝑛𝑅𝑉𝑡} = {𝑉𝐿, 𝑉𝐿, 𝑉𝐿, 𝑀}

0     otherwise                                                                                      
.    (22) 

We separately compute the number of transitions from very high volatility states 

to neutral and from very low volatility states to neutral for a range of thresholds, 𝑥 and 𝑦. 

Table 9 summarizes the number of transitions. The number of transitions is fairly 

symmetrical. Table 10 reports the difference between the average volatility in the very 

high/low states and the volatility in the neutral state. The difference is around 10% 

smaller for transitions from the very low volatility state to the neutral state than it is for 

transitions from the very high volatility state to neutral. 
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< Table 9 here > 

< Table 10 here > 

 

Table 11 reports the estimated coefficients of 𝑉𝑜𝑙𝑅𝑒𝑔𝑡
+ and 𝑉𝑜𝑙𝑅𝑒𝑔𝑡

− when they 

are used as replacements for 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 in regression (18). The after-effect seems to occur 

only when transitioning from prolonged exposure to very high volatility, not when 

transitioning from very low volatility. The coefficients of 𝑉𝑜𝑙𝑅𝑒𝑔𝑡
+ are even larger than 

the coefficients of 𝑉𝑜𝑙𝑅𝑒𝑔𝑡  in Table 4. In contrast, the coefficient of 𝑉𝑜𝑙𝑅𝑒𝑔𝑡
− is not 

statistically distinguishable from zero. Thus, the after-effect appears to be asymmetric.  

 

< Table 11 here > 

 

To understand this asymmetry, it is useful to look at the average levels of realized 

volatility in the very high/low states (see Table 12). Whereas the average volatility level 

in the very high states is between the 90th and 95th percentile of the volatility distribution, 

the average volatility level in the very low states is never below the 25th percentile.18 So it 

seems that in the field, prolonged periods of truly low volatility are absent, which 

explains the asymmetry found in our tests of after-effects. We further explore this idea in 

the next subsection.  

 

< Table 12 here > 

 

5.2 Asymmetry of the after-effect in the laboratory 

We revisit the data of Payzan-LeNestour, Balleine, Berrada, and Pearson (2014) 

to investigate whether the foregoing asymmetry in the after-effect post high vs. post low 

prevails in the laboratory as well. The data reveal that the after-effect post high is 

stronger than the after-effect post low, which suggests some potential asymmetry in the 

after-effect, albeit not as large as the one we see in the field (see Table 13, “Original 

                                                        

18 Key percentiles of the realized volatility distribution are: 5th = 5.87%, 10th = 6.64%, 25th = 8.32%, 75th = 

15.99%, 90th = 22.53%, and 95th = 28.20%.  
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Laboratory Experiment”). We attribute this difference between the two studies to the fact 

that in the laboratory, the low volatility parameter was set to a very low value (2%) 

relative to the values typically observed in the field during the low volatility states (7-

9%). 

To test this conjecture, we run follow-up experimental sessions that replicate the 

original laboratory experiment except that we set the volatility parameters to values that 

are in line with the values that we observe in the field.  The experimental design is 

described in detail in Payzan-LeNestour, Balleine, Berrada, and Pearson (2014). We 

repeat the essentials here for ease of reference.  In each trial, the subjects (N=31) are 

shown for 50 seconds a time-series representing the trajectory of a stock market index 

over a year at a daily frequency. Then, during a 15-second test phase, they are asked how 

volatile they perceive a second (unrelated) time-series to be, on a scale of 1-5 (1: very 

flat; 5: very volatile). By design, the trajectory in the test phase always has a volatility 

level of 13.5% (the average volatility level observed during the neutral state in our field 

study). The volatility levels in the first phase of the experimental trials alternate between 

40% (to mimic the very high volatility state in the field) and 7% (to mimic the very low 

volatility state). Control and diversion trials are also randomly interspersed, to get a 

benchmark on subjects’ reports in the absence of any after-effect. In the control trials, the 

subjects see the neutral stimulus in both phases. In the diversion trials, the subjects see 

the neutral stimulus in the first phase and the very high / very low volatility stimulus 

(volatility levels alternate between 40% and 7%) in the second phase.  

 For generalization purposes, we also run a variant of the task in which instead of 

assessing the volatility of a time-series, subjects (N=57) are asked to assess the variance 

of a sequence of balls that are sequentially drawn from a bucket. The balls are drawn 

from normal distributions with varying means and standard deviations. Subjects are 

shown a test sequence (standard deviation: 13.5%) for less than 20 seconds after being 

exposed for 50 seconds to either a low variance stimulus (standard deviation: 5%) or a 

high variance stimulus (standard deviation: 40%).  They are asked to report how unstable 
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they perceive the test sequence to be on a scale of 1-5 (1: very stable; 5: very unstable).19 

The results obtained in both variants of the task are very similar so we merge them here 

for simplicity, but the results hold in each subsample.   

  

< Table 13 here > 

 

Table 13 summarizes the main results. The after-effect appears to be asymmetric 

in the follow-up experiment. Like in the field, the after-effect post high is very strong, 

whereas the after-effect post low is essentially absent. In the original experimental 

sessions, the difference between the mean perceived variability post high (post low) and 

the mean perceived variability in the control trials is -0.44 (0.34). So the magnitude of the 

after-effect post low is smaller than the corresponding magnitude post high, but the after-

effect post low is still significant (p-value: 0.000). In contrast, in the follow-up 

experimental sessions, the after-effect post low vanishes (p-value: 0.650) whereas the 

after-effect post high is very significant. The only difference between the original and 

follow-up experiments is that in the latter, the variability parameters are set to match the 

values observed in the field.  

These results are consistent with our conjecture that the absence of after-effect 

after exposure to low volatility in the field reflects the lack of truly low volatility regimes 

in the stock market, rather than an asymmetry of the after-effect.  

 

6. Conclusions 

 We examine whether the after-effect phenomenon, which has been documented in 

a large number of settings outside of economics and finance, affects investor perceptions 

of asset return volatility and consequently impacts on asset prices. Using VIX for S&P 

500 stocks, we provide strong evidence that investors perceive volatility to be lower than 

actual volatility after prolonged exposure to very high volatility levels.  The magnitude of 

this perception bias is highly economically meaningful as noted earlier.  

                                                        

19 In the volatility version of the experiment (resp. variance version), subjects are explained intuitively by 

means of exemplar stimuli what volatile (resp. unstable) means. Demonstrations of the task and the task 

instructions are available at elisepayzan.com\na. 
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 Our empirical analysis further finds support for a series of more nuanced facts 

predicted by our after-effect theory. For example, the perception bias becomes stronger, 

the longer the exposure to the very high / very low volatility ‘stimulus’. The perception 

bias is also stronger when the stimulus is more intense, i.e., following more extreme 

levels of volatility. Furthermore, consistent with after-effects being the driver of our 

results, we find no perception bias following jumps in volatility that are not preceded by 

prolonged exposure to very high / very low volatility levels—even though these jumps 

are comparable in magnitude to those that induce after-effects. These additional results 

rule out the most plausible alternative explanations. To our knowledge, no competing 

theory can explain the collection of empirical facts. 

 The psychology, physiology and behavioral economics/finance literatures 

document a number of different cognitive limitations and biases that affect individuals’ 

perceptions and behavior in ways that depart from traditional financial economics 

assumptions about rationality. Although there is little doubt that a large number of such 

biases exist in individuals, there is an active and unresolved debate in the literature about 

which of them, if any, affect aggregate market outcomes such as equilibrium asset prices, 

and in what settings.  Much of the debate revolves around whether highly capitalized 

sophisticated and relatively unbiased arbitrageurs/speculators steer markets to outcomes 

consistent with rational behavior, or whether limits to arbitrage, frictions or the sheer 

mass of biased individuals cause biases to impact equilibrium prices.  What is remarkable 

about the current study is that we do not simply document that a perception bias exists 

among some individuals, but rather, we show that the bias has a meaningful impact on 

asset prices.  What is more, we show this not in a small and illiquid market where 

frictions and limits to arbitrage may be large, but in one of the most actively traded 

markets in the world. 

 Our evidence that asset prices in even a very actively traded market can be 

substantially impacted by a neurologically based perception bias naturally raises a 

number of further questions. First, how pervasive are after-effects in financial markets – 

do they play a role in different contexts such as perceptions of trading activity or 

liquidity, do they affect the valuations of companies in addition to stock option prices, are 

their effects stronger in smaller and less active markets? Does the influence of after-
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effects diminish with increased use of computer algorithms to make trading decisions? 

Are there other deep-rooted neurological processes that systematically bias investors’ 

perceptions and influence asset prices? These are all important directions for future 

research, which will help reconcile the behavioral and classical paradigms. 
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Figure 1. How after-effects bias investor perceptions of realized variance. 

This figure illustrates the perception bias that is predicted by the after-effects theory.  After prolonged 

exposure to high (low) realized variance, perceived variance is lower (higher) than actual realized variance. 
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Figure 2. Methodology to identify the volatility regimes. 

This figure illustrates how volatility regimes are defined.  A very-high-to-neutral transition (𝑉𝑜𝑙𝑅𝑒𝑔𝑡 =
+1) occurs when realized volatility is very high (greater than 𝑥 standard deviations above the mean) for at 

least three consecutive days and then neutral (within 𝑦 standard deviations from the mean) the next day.  

Similarly, a very-low-to-neutral transition (𝑉𝑜𝑙𝑅𝑒𝑔𝑡 = −1) occurs when realized volatility is very low 

(more than 𝑥 standard deviations below the mean) for at least three consecutive days and then neutral 

(within 𝑦 standard deviations from the mean) the next day. 
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Figure 3.  Distribution of realized volatility regime changes through time. 

The horizontal axis measures time from the start of our sample (4 April 1996) until the end (31 May 2014). 

Vertical lines indicate very-high-to-neutral (𝑉𝑜𝑙𝑅𝑒𝑔𝑡 = +1) and very-low-to-neutral (𝑉𝑜𝑙𝑅𝑒𝑔𝑡 = −1 ) 

transitions in realized volatility. 
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Figure 4.  Stimulus strength and magnitude of the after-effect. 

This figure plots the coefficient of 𝑉𝑜𝑙𝑅𝑒𝑔𝑡  (vertical axis) in regression (18).  Negative values of the 

coefficient of 𝑉𝑜𝑙𝑅𝑒𝑔𝑡  are consistent with a perception bias due to after-effects.  The figure plots the 

coefficient estimates (strength of the after-effect) and 95% confidence intervals, for four different values of 

𝑥, the threshold that defines very high and very low volatility states (horizontal axis).  

 

  

-4,00

-3,50

-3,00

-2,50

-2,00

-1,50

-1,00

-0,50

0,00

1.00 1.25 1.50 1.75

VolRegt regression coefficient and 95% confidence intervals

𝑥 



36 

 

Figure 5. Stimulus duration and magnitude of the after-effect. 

This figure plots the coefficient of 𝑉𝑜𝑙𝑅𝑒𝑔𝑡  (vertical axis) in regression (18).  Negative values of the 

coefficient of 𝑉𝑜𝑙𝑅𝑒𝑔𝑡  are consistent with a perception bias due to after-effects.  The figure plots the 

coefficient estimates (strength of the after-effect) and 95% confidence intervals, for three different values 

of the stimulus duration (the period of very high or very low volatility, horizontal axis). 
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Table 1 

Number of transitions from high/low to neutral volatility for different threshold values 

This table reports the number of realized volatility regimes (including both very-high-to-neutral 

( 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 = +1 ) and very-low-to-neutral ( 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 = −1 ) transitions) for different threshold values.  

Columns report different values of the threshold that defines very high and very low volatility states 

(volatility that is greater than 𝑥 standard deviation from the mean). Rows report different values of the 

threshold that defines the neutral volatility state (volatility that is within 𝑦 standard deviations from the 

mean).   

 𝑥 

 𝑦 1.00 1.25 1.50 1.75 

1.00 166 80 38 14 

1.25 . 114 58 26 

1.50 . . 78 36 

1.75 . . . 44 
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Table 2 

Differences in volatility in high/low states versus the neutral state 

This table reports absolute difference between the average log realized volatility in the high or low 

volatility state relative to the log realized volatility in the neutral state for different threshold values.  

Columns report different values of the threshold that defines very high and very low volatility states 

(volatility that is greater than 𝑥 standard deviation from the mean). Rows report different values of the 

threshold that defines the neutral volatility state (volatility that is within 𝑦 standard deviations from the 

mean). 

 

 𝑥 

 𝑦 1.00 1.25 1.50 1.75 

1.00 0.38 0.41 0.44 0.55 

1.25 . 0.37 0.40 0.46 

1.50 . . 0.35 0.41 

1.75 . . . 0.38 
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Table 3 

Regressions testing for a perception bias 

This table reports coefficient estimates from regression (18).  Negative values of the coefficient of 𝑉𝑜𝑙𝑅𝑒𝑔𝑡  

are consistent with a perception bias due to after-effects.  The other coefficients are for control variables 

that are defined in the text.  The regression uses the threshold parameters 𝑥 = 1.75 and 𝑦 = 1.50. t-

statistics (in parenthesis) are calculated with heteroskedasticity robust standard deviations. ***, ** and * 

denote coefficients significant at the 1%, 5% and 10% level respectively. 

 

  (1) (2) (3) (4) 

𝑉𝑜𝑙𝑅𝑒𝑔𝑡 -2.726** -2.522*** -2.606*** -2.530*** 

 
(-2.34) (-2.77) (-2.87) (-2.79) 

∆𝐿𝑛𝑅𝑉𝑡 0.062*** 0.024*** 0.034*** 0.037*** 

 
(16.18) (9.46) (9.54) (9.72) 

∆𝐿𝑛𝑅𝑉𝑡−1 
  

0.017*** 0.019*** 

   
(4.62) (5.09) 

𝑟𝑡 
 

-3.309*** -3.204*** -3.209*** 
  

(-18.36) (-17.88) (-18.11) 

𝑟𝑡
− 

 
0.894*** 0.895*** 0.847*** 

  
(3.02) (3.13) (3.00) 

∆𝐿𝑛𝑉𝐼𝑋𝑡−1 
  

-0.149*** -0.149*** 

   
(-4.33) (-4.34) 

𝐷2𝑡 
   

-1.252*** 

    
(-5.51) 

𝐷3𝑡 
   

-1.569*** 

    
(-6.62) 

𝐷4𝑡 
   

-1.228*** 

    
(-5.25) 

𝐷5𝑡 
   

-1.867*** 

    
(-8.46) 

𝛼 0.004 -0.292** -0.296*** 0.923*** 

 
(0.04) (-2.48) (-2.58) (4.75) 

     
R2 8.75% 57.40% 59.33% 60.20% 
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Table 4 

Strength for the after-effect for different volatility state thresholds 

This table reports coefficient of 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 variable in regression (18).  Negative values of the coefficient of 

𝑉𝑜𝑙𝑅𝑒𝑔𝑡  are consistent with a perception bias due to after-effects and larger magnitude coefficients suggest 

a stronger after-effect.  Columns report different values of the threshold that defines very high and very low 

volatility states (volatility that is greater than 𝑥 standard deviation from the mean). Rows report different 

values of the threshold that defines the neutral volatility state (volatility that is within 𝑦 standard deviations 

from the mean). t-statistics (in parenthesis) are calculated with heteroskedasticity-robust standard 

errors.***, ** and * denote coefficients significant at the 1%, 5% and 10% level respectively. 

 

 𝑥 

 𝑦 1.00 1.25 1.50 1.75 

1.00 -1.050*** -1.155*** -2.180*** -3.049*** 

 
(-3.27) (-2.60) (-2.87) (-2.71) 

1.25 . -1.422*** -2.439*** -3.572*** 

  
(-3.78) (-4.13) (-4.46) 

1.50 . . -1.400** -2.530*** 

   
(-2.33) (-2.79) 

1.75 . . . -2.008*** 

  
   

(-2.60) 
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Table 5 

Number of transitions from neutral to high/low volatility for different threshold values 

This table reports the number of realized volatility transitions from the neutral volatility state to very high 

and very low volatility states. Columns report different values of the threshold that defines very high and 

very low volatility states (volatility that is greater than 𝑥 standard deviation from the mean). Rows report 

different values of the threshold that defines the neutral volatility state (volatility that is within 𝑦 standard 

deviations from the mean).   

 

 𝑥 

 𝑦 1.00 1.25 1.50 1.75 

1.00 355 211 130 81 

1.25 . 367 231 140 

1.50 . . 323 202 

1.75 . . . 275 
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Table 6 

Differences in volatility in high/low states versus the neutral state 

This table reports absolute difference between the log realized volatility in the high or low volatility state 

relative to the average log realized volatility in the neutral state for different threshold values. These values 

(in contrast to those in Table 2) are computed for transitions from the neutral volatility state to very high 

and very low volatility states (in Table 2 the transitions are from very high or very low to neutral volatility). 

Columns report different values of the threshold that defines very high and very low volatility states 

(volatility that is greater than 𝑥 standard deviation from the mean). Rows report different values of the 

threshold that defines the neutral volatility state (volatility that is within 𝑦 standard deviations from the 

mean). 

 

 𝑥 

 𝑦 1.00 1.25 1.50 1.75 

1.00 0.38 0.45 0.51 0.57 

1.25 . 0.42 0.48 0.55 

1.50 . . 0.45 0.52 

1.75 . . . 0.49 
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Table 7 

Coefficients of modified volatility regime variable for different volatility state thresholds 

This table reports coefficient estimates for the modified measure of volatility regimes, 𝑀𝑜𝑑𝑉𝑜𝑙𝑅𝑒𝑔𝑡  

(which measures changes from the neutral volatility state to very high and very low volatility states).  The 

coefficient estimates are obtained from regression (18), replacing 𝑉𝑜𝑙𝑅𝑒𝑔𝑡  with 𝑀𝑜𝑑𝑉𝑜𝑙𝑅𝑒𝑔𝑡 .  Unlike 

𝑉𝑜𝑙𝑅𝑒𝑔𝑡  (for which after-effect theory predicts a negative coefficient), after-effects theory does not predict 

a significant coefficient for 𝑀𝑜𝑑𝑉𝑜𝑙𝑅𝑒𝑔𝑡.  Columns report different values of the threshold that defines 

very high and very low volatility states (volatility that is greater than 𝑥 standard deviation from the mean). 

Rows report different values of the threshold that defines the neutral volatility state (volatility that is within 

𝑦 standard deviations from the mean). t-statistics (in parenthesis) are calculated with heteroskedasticity-

robust standard errors.***, ** and * denote coefficients significant at the 1%, 5% and 10% level 

respectively. 

 

 𝑥 

 𝑦 1.00 1.25 1.50 1.75 

1.00 0.033 -0.039 0.160 -0.369 

 
(0.09) (-0.10) (0.32) (-0.53) 

1.25 . 0.240 0.411 -0.216 

  
(0.91) (1.18) (-0.46) 

1.50 . . 0.397 -0.191 

   
(1.38) (-0.52) 

1.75 . . . -0.184 

  
   

(-0.60) 
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Table 8 

Tests of the reset-of-the-mean effect 

This table reports coefficient estimates for the variable 𝑁𝑜𝑛𝑉𝑜𝑙𝑅𝑒𝑔𝑡 , which is non-zero if the volatility 

stays in the very high or very low state (in contrast to 𝑉𝑜𝑙𝑅𝑒𝑔𝑡 , which is non-zero after transitioning to the 

neutral state).  The coefficient estimates are obtained from regression (18), replacing 𝑉𝑜𝑙𝑅𝑒𝑔𝑡  with 

𝑁𝑜𝑛𝑉𝑜𝑙𝑅𝑒𝑔𝑡.  The ‘reset-of-the-mean’ effect, if present, should lead to significant negative coefficients for 

𝑁𝑜𝑛𝑉𝑜𝑙𝑅𝑒𝑔𝑡 .  Columns report different length in days of the stimulus window.  Rows report different 

values of the threshold that defines very high and very low volatility states (volatility that is greater than 𝑥 

standard deviation from the mean). t-statistics (in parenthesis) are calculated with heteroskedasticity-robust 

standard errors.***, ** and * denote coefficients significant at the 1%, 5% and 10% level respectively. 

 

 Length of stimulus window 

 𝑥 2 days 3 days 4 days 

1.00 -0.315* -0.295 -0.412 

 
(-1.94) (-1.47) (-1.59) 

1.25 -0.117 -0.050 -0.035 

 
(-0.53) (-0.17) (-0.09) 

1.50 -0.289 -0.126 -0.303 

 
(-0.98) (-0.29) (-0.48) 

1.75 -0.228 -0.254 -0.136 

  (-0.52) (-0.37) (-0.13) 
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Table 9 

Number of transitions from very high and very low to neutral volatility 

This table reports the number of realized volatility transitions from the very high (𝑉𝐻) state to the neutral 

state (Panel A) and from the very low (𝑉𝐿) state to the neutral state (Panel B) for different threshold values.  

Columns report different values of the threshold that defines very high and very low volatility states 

(volatility that is greater than 𝑥 standard deviation from the mean). Rows report different values of the 

threshold that defines the neutral volatility state (volatility that is within 𝑦 standard deviations from the 

mean).   

 𝑥 

 𝑦 1.00 1.25 1.50 1.75 

Panel A: Transitions from 𝑉𝐻 to 𝑀 
  

1.00 80 40 21 8 

1.25 . 58 35 18 

1.50 . . 47 27 

1.75 . . . 29 

Panel B: Transitions from 𝑉𝐿 to 𝑀 
  

1.00 86 37 14 3 

1.25 . 53 20 5 

1.50 . . 28 6 

1.75 . . . 12 
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Table 10 

Differences in volatility in high/low states versus the neutral state 

This table reports the absolute difference between the log realized volatility in the very high (𝑉𝐻) volatility 

state relative to the neutral state (𝑀) for very-high-to-neutral volatility transitions (Panel A), and the 

absolute difference between the log realized volatility in the very low (𝑉𝐿) volatility state relative to the 

neutral state (𝑀) for very-low-to-neutral volatility transitions (Panel B), for different threshold values.  

Columns report different values of the threshold that defines very high and very low volatility states 

(volatility that is greater than 𝑥 standard deviation from the mean). Rows report different values of the 

threshold that defines the neutral volatility state (volatility that is within 𝑦 standard deviations from the 

mean). 

 

 𝑥 

 𝑦 1.00 1.25 1.50 1.75 

Panel A: Transitions from 𝑉𝐻 to 𝑀     

1.00 0.41 0.44 0.46 0.55 

1.25 . 0.41 0.44 0.48 

1.50 . . 0.40 0.42 

1.75 . . . 0.41 

Panel B: Transitions from 𝑉𝐿 to 𝑀     

1.00 0.34 0.38 0.41 0.54 

1.25 . 0.33 0.34 0.42 

1.50 . . 0.27 0.39 

1.75 . . . 0.32 
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Table 11 

This table reports coefficients for the  𝑉𝑜𝑙𝑅𝑒𝑔𝑡
+ (Panel A) and 𝑉𝑜𝑙𝑅𝑒𝑔𝑡

−  (Panel B) variables, which 

measure very-high-to-neutral and very-low-to-neutral volatility transitions, respectively.  The coefficient 

estimates are obtained from regression (18), replacing 𝑉𝑜𝑙𝑅𝑒𝑔𝑡  with  𝑉𝑜𝑙𝑅𝑒𝑔𝑡
+  (Panel A) and 𝑉𝑜𝑙𝑅𝑒𝑔𝑡

− 

(Panel B).  Columns report different values of the threshold that defines very high and very low volatility 

states (volatility that is greater than 𝑥 standard deviation from the mean). Rows report different values of 

the threshold that defines the neutral volatility state (volatility that is within 𝑦 standard deviations from the 

mean). t-statistics (in parenthesis) are calculated with heteroskedasticity-robust standard errors.***, ** and 

* denote coefficients significant at the 1%, 5% and 10% level respectively. 

 

 𝑥 

 𝑦 1.00 1.25 1.50 1.75 

Panel A: Transitions from 𝑉𝐻 to 𝑀     

1.00 -2.410*** -2.708*** -3.784*** . 

 (-4.86) (-4.39) (-3.86) 

 1.25 . -3.018*** -3.924*** -3.849*** 

 
 

(-5.76) (-5.39) (-3.93) 

1.50 . . -2.624*** -2.597** 

 
  

(-3.20) (-2.38) 

1.75 . . . -2.607** 

        (-2.56) 

Panel B: Transitions from 𝑉𝐿 to 𝑀     

1.00 0.226 0.530 0.225 . 

 (0.62) (1.03) (0.25) 

 1.25 . 0.328 0.152 . 

 
 

(0.75) (0.21) 

 1.50 . . 0.617 . 

 
  

(0.92) 

 1.75 . . . -0.578 

        (-0.72) 
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Table 12 

Average realized volatility in the very high and very low volatility states 

This table reports the average realized volatility in the very high (Panel A) and very low (Panel B) volatility 

states for different threshold values.  Columns report different values of the threshold that defines very high 

and very low volatility states (volatility that is greater than 𝑥 standard deviation from the mean). Rows 

report different values of the threshold that defines the neutral volatility state (volatility that is within 𝑦 

standard deviations from the mean). 

 

 𝑥 

 𝑦 1.00 1.25 1.50 1.75 

Panel A: Transitions from 𝑉𝐻 to 𝑀     

1.00 22.52 22.32 25.55 . 

1.25 . 23.98 26.80 29.40 

1.50 . . 27.95 30.36 

1.75 . . . 30.55 

Panel B: Transitions from 𝑉𝐿 to 𝑀     

1.00 9.30 8.49 7.32 . 

1.25 . 8.91 8.51 . 

1.50 . . 9.22 . 

1.75 . . . 8.30 
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Table 13 

Asymmetry of the after-effect in the laboratory 

This table reports the magnitude of the after-effects post low and post high. The after-effect post low (resp. 

post high) is measured by the difference between the subjects’ mean report of the volatility of the test 

stimulus after exposure to low (resp. high) volatility and their mean report of the volatility of the test 

stimulus after exposure to neutral volatility in the control trials. The mean difference across subjects is 

reported, as well as standard deviation, t-statistic and p-value, both for the original laboratory experiment 

(first two columns on the left) and for the follow-up experiment (second two columns). 

 

  

Original Laboratory Experiment 

(N=57) 

[Low: 2% Neutral: 10% High: 45%] 

   Follow-up Laboratory Experiment (N=88) 

[Low: 5-7%; Neutral: 13.5%; High: 40%] 

  Post low Post high Post low Post high 

Mean 0.34 -0.44 0.02 -0.30 

Standard error 0.07 0.06 0.04 0.06 

t-statistic 5.16 -7.38 0.46 -5.38 

p-value 0.000 0.000 0.650 0.000 

 


