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Abstract

This paper surveys the literature on the joint production of good and bad
outputs. Recently, material balance has arisen as an issue in this literature as a
restriction on the technology, which we also address. We use our preferred speci-
fication of joint production technology and estimate the efficiency of U.S. electric
utilities in a network setting. This network allows to specify two subtechnologies,
one of which is an abatement technology.

1 Introduction

The evaluation of performance which accounts for joint production of good and bad out-
puts has become a small industry, for which we hope to provide a selective survey, which
focuses on modeling and measurement issues. Also included is an application of our

*We would like to thank participants at the Verona EWEPA meetings special session on good mod-
eling of bad outputs for their comments and Curtis Carlson for providing his capital stock data.



preferred model to estimation of efficiency of U.S. electric utilities in a network setting.

We begin by providing a simple framework for identifying desirable and undesirable
outputs in a consumer preference framework, where more of good outputs is typically
preferred to fewer, and fewer undesirable outputs are preferred to more. Turning to
the producer side, we take an axiomatic approach. We begin with the premise that the
good and bad outputs are jointly produced, i.e., the bad outputs are a byproduct of the
production of good outputs. It is also assumed that we are interested in the case in
which it is ‘costly’ to reduce the bad outputs. Recently there has been renewed concern
with accounting for ‘material balance’ in the joint production case, which as generally
formulated in the literature, imposes further restrictions on technology. We follow work
by Rgdseth (2011) and relax these restrictions to include abatement, in our case by spec-
ifying a network with two subtechnologies, one of which is an abatement subtechnology.
Our application to electric utilities illustrates this approach and concludes.

2 Good vs Bad Outputs

We would like to have a systematic method of identifying desirable (good) and unde-
sirable (bad) outputs. Our approach is to begin with preferences of a representative
consumer. This consumer is assumed to have well-defined preferences > over two vec-
tors of outputs, which we signify as y € R and b € R/. We say that y is a vector of
good or desirable outputs if

yzy = (y,b) = (y,0). (1)
In words, our consumer prefers more of y to less of y as long as there is no more of b in
the bundle.
We say that b is an undesirable or a bad output if

b'<b— (y,b) = (y.b), (2)

and our consumer prefers less of b as long as y is held constant. We can illustrate our
representative consumer’s preferences for the simple case in which there is only one good
output and only one bad output, as in Figure 1.1

The bundle (y, b) is on indifference curve I-I. The bundle (3, b)=(y, b) is preferred
and thus is on a higher indifference curve II-II, due North of (y,b). Due West of (y, b)

ITf the bad output does not affect consumers but rather another producer, we can think of the
indifference curves as isoquants instead.



Figure 1: Preferences with Good and Bad Outputs



also on the higher indifference curve II-11 is (y, &), since (y, b )<(y,b). Thus classification
of good and bad outputs is derived from consumer preferences.

Before we turn to specification of technology in the presence of these two types of
outputs, we set the stage with an example of joint production of good and bad outputs
from Anderson (1987, p. 5):

‘For example, in making of potato chips, the principal material is potatoes. How-
ever, attached to these potatoes are the ‘skins’, which are usually not desired and are
peeled off early in the production process. They are that part of the material input
which is not usable.”

3 The Production Technology

Again let y € §Rf denote a vector of good outputs and b € %;{ a vector of bad or
undesirable outputs as determined by our representative consumer. We also introduce
x € RY to denote a vector of inputs. Then we can represent technology by its output
sets?

P(z) = {(y,b) : x can produce (y,b)},z € RY. (3)
We assume that P(x) satisfies some conventional axioms, namely
P.1 P(0) = 0 which allows for inactivity.
P.2 P(x) is closed.
P.3 P(x) is bounded, which imposes scarcity.
P4 2’2z — P(x') D P(x), strong or free disposability of inputs.

P.2 and P.3 together impose compactness on our output sets. P.4 implies that if
inputs are increased (or not reduced), then the output set will not shrink. This property
implies that inputs are not congesting output, an assumption that can be modified if
appropriate.

The axioms itemized above on our technology are consistent with the traditional
neoclassical model. In order to modify the traditional model so that it becomes an en-
vironmental production technology, we introduce additional assumptions specific to this

2Clearly, this predates the concept of stuffed potato skins.
3Much of this section has been presented elsewhere, see for example, Fire, Grosskopf, Noh and Weber
(2005) and chapter 2 in Fare and Grosskopf (2004).



case.

One of the distinctive features of production in the presence of good and bad out-
puts is based on thermodynamics; as Baumgértner et al (2001, p. 365) state

‘...the production of wanted goods gives rise to additional unwanted outputs...’

i.e., bad outputs are essentially byproducts of production of good outputs. To model
this condition, we introduce? the axiom of null joint production, i.e.,

P.5if (y,b) € P(z), and b= 0 then y =0.

This axiom states that if good and bad outputs are null joint, then if no bad
outputs are produced, it is not possible to produce any good outputs—no fire without
smoke. Or if good outputs are produced then some bad byproduct must also be produced.

In the traditional neoclassical specification of technology, it is generally assumed
that all outputs are strongly disposable, i.e., in our case with good and bad outputs this
would imply

P.6 if (y,b) € P(z) and (y',0)=(y,b) then (3 ,b) € P(x),
which as pointed out by Fgrsund (2009) would give us a

‘...nonsensical result that zero bads can be achieved at no costs...’

Instead for our environmental technology we assume that the good and bad out-
puts are (together) weakly disposable, (Shephard (1970)),

P.7if (y,b) € P(z) and 0 = 0 = 1 then (0y, 6b) € P(x).

Weak disposability is appropriate when we use Shephard’s output distance function as
our function representation of technology. If instead we represent the technology with a
directional output distance function, g-disposability is required:

P8y e P(zx),g e RY, g +#0,050=51 = y+0g € P(x).
Thus our particular output disposability assumption is associated with the func-

tion representation of the underlying set representation of technology, here P(z). Since
we will eventually be focusing on directional distance functions as our representation

4This axiom is from Shephard and Fére (1974).



of technology our base axioms are P.1-P.4 and P.8. In Section 5 we discuss Material
Balance Models, which require further restrictions on our output sets.

We focus next on defining the specifications which are of empirical interest. We
provide two specifications of a function representation of environmental output set P(x)
which satisfies axioms P.1 — P.4 and either P.7 or P.8. These include an Activity Anal-
ysis/Data Envelopment Analysis (DEA) specification and a parametric specification of
the directional output distance function.

Beginning with the DEA specification, assume that we have data (z*,y*, b*) on
inputs and outputs for £ = 1,..., K firms, farms or decision making units. We assume
that these data satisfy the conditions proposed by Kemeny et al (1956), namely

M
> um >0, k=1,....K, S5 ykm >0, m=1,....M (4)

m=1

N
> x>0, k=1,...,K, S5 23, >0, n=1,...,N.

n=1

In addition we require that

J
by >0k=1,...,K S5 by >0, j=1,....J (5)

Jj=1

where the last set of inequalities ensure that technology satisfies null jointness. The first
set of inequalities tells us that each firm produces some bad output and the second set
states that each bad is produced by at least one firm.

All together these inequalities ensure that our DEA specification will satisfy our
axioms, without requiring that inputs and outputs all be strictly positive. Given these
conditions the DEA output set is then formulated as

P(x) ={(y.0) : Tiy 2kUkmZYm, m=1,.... M (6)
Z§:1Zkbkj=bj, j=1...,J
SN T STp, n=1,...,N
220, k=1,...,K}.



This model satisfies P.1-P.4 and P.5. In addition it satisfies P.7 (weak disposability)
and constant returns to scale, i.e.,

P(\z) = AP(x), \20. (7)

We can use this activity analysis representation of technology as part of a DEA
type estimator of the directional output distance function, defined as

Do(w,y,b; gy, —g) = max{3: (y + Bgy,b — Bgy; g) € P(x)}, (8)
where g = (g,, —g») is the directional vector which is the direction in which (y,b) is
projected to the boundary of the output set P(z). This can be estimated as the solution
to a linear programming problem, with the objective which seeks to increase good outputs
and decrease bad outputs as in (8) above and the constraints specified as the inequalities
in (6) above. We note that the directional distance function signals efficiency when
Do<x7 Y, b; 9y> _gb>:0

We can also parameterize the directional output distance function and estimate it
using econometric techniques. In order to parameterize the function we make use of two
useful conditions which it satisfies, the first

Dy, y,b; gy, —g)20 if and only if (y,b) € P(x). (9)

We refer to this condition as representation; for this condition to hold, outputs must
be g-disposable. The directional output distance function also satisfies the translation
property, denoted as

Do(,y + gy, b — agy; gy, —g5) = Dol,y,b; gy, —gs) — v, @=0. (10)

The translation property is critical in the parameterization of the distance function.
It together with the assumption that it can be approximated as a generalized quadratic
form® implies that ﬁo(m, Y, b; gy, —gp) should be parameterized using a quadratic func-
tional form, eg.,’

N M
Do(x7y7b;]-7_]-) = Oéo—i_zanxn—i_Zﬁmym (1]-)

n=1n'=1 m=1m/=1
+ 1/2 Z Z ijrbiby + Z Z Vnnbj + Z Z fmjYmD;
j=1j'=1 n=1j=1 m=1 j=1

5A function is generahzed quadratic (here in two variables) if it takes the form Y=1(F(q1,q2)) =

a, + 21 L oih(g;) + ZZ 1 Z] 1 @iih(gi)h(q;), seeChambers(1988).
6See Fire, et al (2010).
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Figure 2: Typical Output Set

N M
n=1m=1

This could be estimated as a deterministic frontier as in Aigner and Chu (1968),
which is a fairly simple linear or quadratic programming problem, or as a stochastic
frontier problem.

4 Equilibrium

Using data from U.S. coal-fired electric utilities, Fére, et al (2005) estimated a quadratic
directional output distance function as representation of the environmental output sets
discussed earlier. The shape of the output sets from these estimates are illustrated in
Figure 2.

Integrating this shape of an output set with the preferences from Section 2 yields

8



P(x)

b* b

Figure 3: Equilibrium Production of Good and Bad Outputs

an equilibrium allocation of good and bad outputs, as in Figure 3, for the simple single
good, single bad output case.

In Figure 3, the ‘maximal’ feasible utility level is achieved at (y*,b*) where the
indifference curve I-I is tangent to the boundary of the output set P(z). This also iden-
tifies the optimal tradeoff between good and bad outputs.

This tangency between the marginal rate of substitution and marginal rate of
transformation can be used to estimate the ‘price’ of the bad output. The slope of the
separating hyperplane between the indifference curve and the output set can be expressed
as a price ratio between the good (py,, ) and the bad outputs (ps,). As a tangent to P(x),
this may also be expressed as the ratio of derivatives of the directional output distance
function, i.e.,”

"We are assuming here that those derivatives exist. For a more general case, see Chambers and Fire
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Dy 8D0(x,y,b;gy,—gb)/aﬁo(m,y,b;gy,—gb)

Py b, W

Thus if the price of at least one of the good outputs is known, then given estimates

of the directional distance function based on sample data on inputs, good and bad
outputs, the price of bad outputs j = 1,...,J can be computed from the estimated

distance function as

. (12)

850<£L', Y, ba gy7 _gb>

850(1’, Y, ba Gy, _gb)
pbj = pym ab / .
J

Y

=1, (13)

5 Material Balance Principle

Based on the first law of thermodynamics. i.e., matter can neither be created nor de-
stroyed, Ayres and Kneese (1969) introduced the notion of material balance into eco-
nomics. This principle has recently been used by economists in specifying pollution
technologies to restrict the substitutability among inputs, good and bad outputs.®

The general approach is to associate between an input x, and an output ¥, an
input emission factor r, and a recuperation factor s,, which are then used to solve for
the bad output b (assume for the moment that it is a scalar) as’

b = 1Ty — SmlYm. (14)

Hence the material balance principle forms a convex cone in input-output space,
thus restricting feasible production possibilities. (In our example s, = 0 since sulfur is
not part of the good output.)

In general this formulation of the material balance condition would also imply that
weak disposability of outputs and g-disposability would be restricted or infeasible. To
visualize the impact on feasible production imposed by the material balance constraint
(MB), we combine (14) with our output set from Figure 2 above, see Figure 4.

The intersection between the material balance constraint and the technology P(x)
is the line segment AB. Clearly, very little economic analysis can be done under these
constraints.

A possible ‘fix’ is suggested in Rodseth (2011), namely to allow for abatement, i.e.,
modify the material balance principle as stated above to hold as an inequality, i.e.

(2008).
8See Coelli et al (2007), Murty et al (2010) Fgrsund (2009) and Rgdseth (2011) for examples.
9This particular specification is based on Rgdseth (2011).
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Figure 4: Technology and Material Balance
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Figure 5: Technology, Material Balance with Abatement

b2 TnZn — SmYm- (15)

If we allow for this relaxed constraint to admit abatement, we have Figure 5.

In this case the feasible economic region of the technology consists of the shaded
part of the output set above AB. This accords more closely to observed data. This leads
us into our Network Model in which we explicitly formulate an abatement subtechnology,
which is then integrated into the overall production Network.

6 Modeling Good and Bad Outputs in a Network

Up to this point we have treated our production technology as something like a black box:
inputs enter the technology and at the other end of the process, good and bad outputs

12



are produced. Our assumption of weak disposability of outputs does not explicitly tell us
how bad outputs may be reduced, just that with fixed inputs, reductions would require
either lower overall production or diversion of some of the given inputs away from the
production of goods to abate bad outputs, which would effectively reduce good output
production as well.

Here we ‘look inside the box’ to explicitly introduce an abatement activity into the
production process. Inside the box we specify subtechnologies, which are linked into a
network. Our empirical example using data from U.S. coal-fired power plants, has two
subtechnologies, namely the joint production of electricity and sulfur dioxide and the
abatement subtechnology to reduce sulfur dioxide. We illustrate this setup in Figure 7
below.

The network consists of the two subtechnologies, P' and P%2. We also have what
is referred to as a source entering the black box and a sink with final products exiting
the black box. The source allocates the system exogenous inputs z = (z! + 2?) into the
two technologies and the sink sums up the final outputs (y/, b"). Within the black box,
the good output y is either a final output y/ or an intermediate input ' into P2, so
y = (y' +5/). The abatement technology has (y’,b") as intermediate inputs and z? as
system exogenous input. Its output is the final bad output bf. The sink forms the output
bundle (y/,b/). The source adds up the subtechnologies’ system exogenous inputs into
x = (x' + 2?).

The network technology may now be written as

P(z) = {(y/, b)) : (y,b') € P'(z"),y =y +¢',b € P*(a® V', y"),2=(a" + 2%)}. (16)

‘Optimizing’ over P(z), such as measuring efficiency or performance, yields optimal
allocations of z into (2!, 2?) and optimal allocation of y into y* and y/.

To estimate efficiency of the plants in our sample we apply a directional distance
function (Chambers et al, (1998)) which expands the good outputs and contracts the
bad. We choose the direction +1 for the good outputs and -1 for the bad outputs. This
yields a straightforward interpretation of the resulting scores in terms of the original

units of the good and bad outputs.'®

We illustrate the directional output distance function in Figure 6, which is defined
for the network technology as

[jo(xayf + - 17bf -5 1) € P(SL’)}, (17)

where P(z) is defined above and the directional distance function is illustrated in the
figure for the single good and single bad case. The output vector (y/,b/) at B is projected
to the frontier of P(z) in the (1,-1) direction, ending at A, given our direction vector

10This is a special case of Luenberger’s shortage function, see eg., Luenberger (1995).
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Figure 6: Directional Output Distance Function
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g = (1,—1). The distance 3 is the efficiency score and gives the number of additional
units of good output and reductions in bad output required to move from B to A in that
direction. The estimation of the efficiency scores are achieved within what we call the
network DEA model. We assume that there are k' = 1, ..., K observations of coal-fired
electric utilities with both subtechnologies, then the efficiency score for k" is the solution
to the linear programming problem

max s.t. (18)
SUBTECHNOLOGY 1:

S A+ uD)Z v (vl + 801

25:1 zb), = b’
SR gk < vtn=1,...,N
2120, k=1,... K.
SUBTECHNOLOGY 2: (19)
25:1 Bl Y’
i lebi = bi/ —-f-1
Yiabs
Yho 2, < w?n=1,....N
%20, k=1,... K
SOURCE: (20)
rh + i< Tp,m=1,..., N.

The individual subtechnologies have their own set of intensity variables, z} and
22, k=1,..., K, respectively. These are restricted to be nonnegative which implies that
we are allowing for constant returns to scale, in each subtechnology and for the network
as a whole.

The two subtechnologies are connected by the use of y* produced in subtechnology
#1 which then becomes an input into subtechnology # 2. Similarly the bad output
from subtechnology #1 becomes an input into subtechnology #2. In addition there is an
indirect interaction between the subtechnologies through the source. We are solving for
the intermediate good and bad outputs, 3 and b, respectively, as well as for the allocation
of inputs to the subtechnologies, ' and 2, respectively. The intensity variables and of
course the value of J are also variables for which we solve. The ‘data’ are identified by

HSee Fire and Grosskopf (2004) for details.
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(y"M,bAf)

Figure 7: The Network Technology

their k£ subscripts and are generally on the left hand side of the inequality and equality
constraints; the exceptions are the final good and bad outputs on the right hand side.

7 Network Model vs Joint Production Model

In this section we compare the above network model to the ‘standard’ joint production
model.

The joint production model consists of one technology using inputs x € §Rf (here
the sum of ! and x2) to produce good output y which is now the sum of 4/ and 3. The
bad output b is now equal to b® since we do not explicitly model the abatement process
in this case, we just observe the total emitted bad outputs before abatement. Thus the
activity analysis or DEA specification of our optimization problem is

16



max [3 (21)

Z,ﬁ

s.t.
K

> 2

v

yk;""ﬁ‘l

k=1
K

Dby = by, —pB-1,5=1,...,J
k=1

K

szxkn é xk’n7n:17"'7N

k=1

2k i O,kzl,...,K.

In our empirical application we have only 14 observations in each period. In order
to increase our degrees of freedom we create a grand or meta frontier for the joint
production model as well as for the subtechnologies in the network model by pooling all
of the data. So, for example, our output constraints in the joint production model will
be modified to read

T K
DD AUy (22)
t=1 k=1
and similarly for all of the input and output constraints in the network and the joint
production models.

Our main interest is to see how the introduction of the network, which explic-
itly models the abatement process and allows for more flexibility, compares to the more
restrictive joint production model. We anticipate that the greater flexibility of the net-
work model will offer greater possibilities for improvement and therefore exhibit larger
inefficiency scores than the joint production model.

8 Data

Data for coal-fired power plants from 2001 to 2005 are used to solve the linear program-
ming problems in our basic joint production model (from (8) and (6)) and our network
model (18) which includes abatement. The technology modeled in this study consists of
one good output, net electrical generation—kilowatt hours (kWh), and one bad output—
sulfur dioxide (SO2). The exogenous inputs consist of the capital stock, the number of
employees, and the heat content (in Btu) of the coal, oil, and natural gas consumed at

17



each plant. FERC Form 1 survey collects information on the cost of plant and equipment
and the average number of employees for each electric power plant.!?

The U.S. DOEs Form EIA-767 survey is the source of information about fuel con-
sumption (Btu), and net generation of electricity (kilowatt hours). The U.S. EPA is our
source for the net generation of SO2 (i.e., quantity of SO2 released into the atmosphere).
Our panel consists of coal-fired power plants for 2001 to 2005. While the plants may
consume coal, oil, or natural gas, in order to model a homogeneous production technol-
ogy, coal must provide at least 95 percent of the Btu of fuels consumed by each plant.
13

Details of how these data are constructed is included in the Appendix.

9 Results

The maximum level of technical inefficiency found by the joint production model is 0.09,
while the maximum level of technical inefficiency for the network model is 1.6. The
joint production and network models credit a producer for simultaneously expanding
good output production and contracting bad output production. Both models calculate
good output as the summation of net generation (electricity sold to final users) and the
electricity used by flue gas desulfurization (FGD) systems. However the joint production
model seeks to reduce gross SO2 emissions (i.e., emissions generated by the electric power
plant prior to treatment by the FGD system), while the network model seeks to reduce
net SO2 emissions (i.e., emissions released by the power plants after treatment by the
FGD system). As a result, it is not surprising that the level of technical inefficiency
found by the joint production model is substantially less than the technical inefficiency
found by the network model.

12\While the FERC Form 1 survey collects data on the historical cost of plant and equipment, it does
not collect data on investment expenditures, the value of retired plant and equipment, or depreciation
costs. As a result, we assume changes in the cost of plant and equipment reflect net investment (NT).
Next, we convert the historical cost data into constant (1973) dollar values using the Handy-Whitman
Index (HWI) (Whitman, Requardt & Associates, 2006). This is the same procedure employed by
Yaisawarng and Klein (1994, p. 453, footnote 30) and Carlson et. al (2000, p. 1322). The net constant
dollar capital stock (CS) for year n is calculated in the following manner: C'S, = >} | H]\%tjt. In the
first year of its operation, the net investment of a power plant is equivalent to the total value of its plant
and equipment.

BSome plants are excluded due to their consumption of miscellaneous fuels: petroleum coke, blast
furnace gas, coal-oil mixture, fuel oil #2, methanol, propane, wood and wood waste, refuse, bagasse
and other nonwood waste. Although a number of plants consume fuels other than coal, petroleum, and
natural gas, these miscellaneous fuels represent very small percentages of fuel consumption (in Btu). We
decided to exclude a plant when its consumption of miscellaneous fuels represented more than 0.0001
percent of its total consumption of fuel (in Btu). For a plant whose consumption of miscellaneous fuels
consumption represents less than 0.0001 percent of its fuel consumption, its consumption of miscellaneous
fuels is ignored.

18



For both the joint production and network models, the level of inefficiency is de-
pendent upon units of the good output, the units of the bad output, and the value of
the g vector. Given our choice of direction vector as g = (1, —1) our resulting scores will
be in terms of the units of the goods and bads, respectively.

We summarize our results in the following diagrams. For each year, the scatter
diagrams depict the technical inefficiency for each power plant found by the joint pro-
duction and network models. For each year, the joint production model finds 3 to 9 of
the 14 electric power plants with no technical inefficiency, while the network model finds
only 0 to 2 plants with no technical inefficiency in each year. In addition, we use scatter
diagrams for both the joint production and network models that include all observations
from 2001-05.

In the network model, reassigning inputs from good output (i.e., electricity pro-
duction) to pollution abatement results in a reduction of SO2 emissions (i.e., the bad
output) at the cost of reduced good output production. Based on our raw data, we
observe that the share of capital stock assigned to pollution abatement ranges from 7.1
to 27.5 percent, while the share of labor assigned to pollution abatement ranges from
1.9 to 41.1 percent. The share of total electricity output assigned to pollution abate-
ment ranges from 0.1 to 2.9 percent. In terms of the output of the pollution abatement
technology, net emissions as a share of gross emissions ranges from 4.9 to 63.2 percent.

We conclude that the network model does more closely approximate the technology
of our electric utilities, and yields performance measures that provide more information
to firms on how to improve their performance, both in terms of production of electricity
and abatement of SO,.
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10 Appendix

10.1 Derivation of Flue Gas Desulfurization Capital Stock

EIA-767 surveys are available for 1985 to the present. The EIA-767 survey collects data
on the Installed Cost of FGD Unit, Excluding Land (thousand dollars) for the following
categories: (a) Structure and Equipment, (b) Sludge transport and Disposal System and
(c) Total (summation of lines a and b plus any other costs pertaining to the installation
of the unit). In order to maximize the number of plants with FGD units in our sample,
we use (c) Total when calculating the FGD capital stock.

The Federal Power Commission (FPC) Form 67 (the predecessor to the EIA-767
survey) results were published for 1969 - 1976. Although the FPC-67 and EIA-767
surveys were conducted between 1969 and 1984, the data on the installed cost of FGD
systems have not survived. Hence, it is necessary to devise a strategy for approximating
changes in the cost of FGD systems installed prior to 1965.

During this period, cost data were also collected by the EPAs Flue Gas Desulfur-
ization Information System (FGDIS) and published in a series of reports entitled Utility
FGD Survey and in the Energy Information Administrations annual report entitled Cost
and Quality of Fuels. However, the FGDIS data are substantially different than the
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EIA-767 data. As a result, we do not use the FGDIS data. Instead, we assume that
prior to 1985 all FGD investment expenditures are undertaken in the year in which the
FGD unit starts operation. Based on data for 1985-2005, this appears to be a reasonable
approximation.

10.2 Derivation of FGD Electricity Consumption

The ETA-767 survey requests data on Electric Energy Consumption (kilowatt hours) for
each FGD unit.

10.3 Derivation of FGD employment

The EIA-767 survey requests data for FGD O&M expenditures (in thousands of dollars)
associated with Labor and Supervision. The next step is converting these data into the
number of employees assigned to operate FGD units. Hence we need to calculate an
average payroll cost per employee to derive the number of employees assigned to operate
FGD units.

The FERC Form 1 collects information on the Distribution of Wages and Salaries
associated with Electric power generation by private utilities (page 354). Unfortunately,
the FERC Form 1 survey ceased collecting data on the number of Electric Department
Employees (page 323) after 2001. Hence it is not possible to use these data to estimate
the average cost per employee in the utility.

County Business Patterns provides data on number of employees and payroll for in-
dustries within states and counties (http://www.census.gov/epcd/cbp/download /cbpdownload.html).
Dividing the payroll by the number of employees provides an estimate of the average cost
of an employee for a NAICS industry in a given state. Dividing the EIA-767 value for
FGD O&M expenditures for Labor and Supervision by the average cost of an employee
(from the CBP data) yields an estimate of the number of employees at a power plant
that are assigned to pollution abatement (i.e., operating the FGD units).

From 1998 to 2005, CBP data are reported using NAICS codes. The following
NAICS industry classification codes are used in order of preference to assign wage rates
to coal-fired electric power plants:

1. Fossil Fuel Electric Power Generation (NAICS 221112)
2. Electric Power Generation (NAICS 22111)
3. Electric Power Generation, Transmission and Distribution (NAICS 2211)

Due to confidentiality concerns, most counties in CBP do not report data for the
detailed NAICS codes for electric power plants. As a result, we use CBP state data, and
assume all power plants in a state are assigned the same wage and salary for a given
year. If data are not available for a state, then we use values from a neighboring state.
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Once the number of employees assigned to operate the FGD units is determined,
this value is subtracted from total employment (from FERC Form 1) at the plant. The
difference constitutes the number of employees assigned to generate electricity.

10.4 Derivation of Gross SO, Emissions

In order to identify the amount of SO, abated by an FGD system, it is necessary to
compute the difference between potential (i.e., gross) SO, emissions and measured (i.e.,
net) SO, emissions. Hence, the challenge is developing an estimate of potential (i.e.,
gross) SO2 emissions for plants with FGD units. The EIA-767 provides information on
the SO, content of coal and oil consumed by each plant. The 2004 Electric Power Annual
(Energy Information Administration, U.S. Department of Energy, 2005, p. 74) reports
SO, Uncontrolled Emission Factors for six different boiler type / firing configurations
for different types of fuels. Starting in 2001, the EIA-767 fuel data provides detailed
information on each type of fuel consumed. For example, prior to 2001 the EIA-767
would report data on Coal consumption. Starting with 2001, the fuel would be identified
as bituminous or sub-bituminous.

For each plant with an operational FGD unit, we take the product of the quantity
of fuel consumed by each boiler of a plant, the sulfur content of the fuel consumed by
the boiler, and the boilers uncontrolled SO, emission factor. This yields the quantity of
uncontrolled SO, emissions (i.e., gross SOy emissions).

10.5 Sample

The EIA-767 survey was not conducted in 2006. Starting in 2007, Form EIA-860 and
the Form EIA-923 collect most of the data formerly collected on the Form EIA-767.

Some employment and historical cost of plant for (1) Structures and Improvements
and (2) Equipment data are interpolated. Otherwise, if a plant did not report fuel
consumption, net generation of electricity, or SOy emission data for a single year, the
plant is not included in our sample.

Given the availability of information to generate gross SO, emissions, our sample
consists of observations from 2001-05. From our initial 2001-05 sample developed for a
joint production model with 112 coal-fired electric power plants, we identified 35 plants
with operational FGD units for at least one year from 2001-05. Of those 35 plants, it
is necessary to remove 22 plants from our sample because either the FDG systems were
not operating during the entire period or the plant failed to report one or more of the
following pieces of information: (1) FGD electricity consumption, (2) FGD employment,
or (3) FGD capital stock. If we included these plants we would be treating plants with
operational FGD systems as if they had no installed FGD units. As a result, 14 of the
94 power plants in our sample have an operational FGD system during 2001-2005.
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