Online Data, Fixed Effects and the Construction of High-Frequency Price Indexes

Jan de Haan* and Rens Hendriks**

* Statistics Netherlands / Delft University of Technology
** Statistics Netherlands

EMG Workshop 2013
Aims of the paper

• Explain why the multilateral Time-Product Dummy index (TPD index) differs from its chained matched-model counterpart.
• Show that the multilateral TPD or ‘fixed effects’ method does not produce quality-adjusted price indexes.
• Investigate whether the TPD method is useful for estimating high-frequency price indexes from online data (for goods where quality change is not a major concern).
Outline

- Background
- Time dummy hedonic price indexes
- Time-product dummy indexes
- Unmatched items and the time-product dummy index
- A comparison with the GEKS-Jevons index
- Issues with daily online data and daily indexes
- Empirical results
- Conclusions
Background

- Possible use by Stats Netherlands of online prices obtained through web scraping
 Efficiency reasons
 Daily observations: high-frequency price indexes possible
 However, no quantity information
- Choice of index number method
 Diewert (2004): TPD method produces a matched-model index in the bilateral (two-period) case.
 Aizcorbe, Corrado and Doms (2003): TPD produces quality-adjusted price index in the multilateral (many-period) case. This seems to good to be true.
Time dummy hedonic indexes

We only consider the log-linear hedonic model. Estimating equation on the pooled data for periods $t=0,1,…,T$ is

$$\ln p_i^t = \delta^0 + \sum_{t=1}^{T} \delta^t D_i^t + \sum_{k=1}^{K} \beta_k z_{ik} + \varepsilon_i^t$$

Estimating this time dummy model by OLS regression yields

$$P_{TD}^{0t} = \exp(\hat{\delta}^t) = \frac{\prod_{i \in S^t} (p_i^t)^{\frac{1}{N^t}}}{\prod_{i \in S^0} (p_i^0)^{\frac{1}{N^0}}} \exp\left[\sum_{k=1}^{K} \hat{\beta}_k (\bar{z}_k^0 - \bar{z}_k^t)\right]$$
Time dummy hedonic indexes

In words: the time dummy index can be written as the product of the ratio of geometric mean prices and a quality-adjustment factor.

This exponential factor depends on the changes over time of the average characteristics.

The time dummy index is transitive and can be written as a chain index:

\[
P_{TD}^{0t} = \prod_{\tau=1}^{t} \frac{\prod_{i \in S^\tau} (p_i^\tau)^{1/N^\tau}}{\prod_{i \in S^{\tau-1}} (p_i^{\tau-1})^{1/N^{\tau-1}}} \exp \left[\sum_{k=1}^{K} \hat{\beta}_k (\bar{z}_k^{\tau-1} - \bar{z}_k^\tau) \right]
\]
Time-product dummy (TPD) indexes

Characteristics and their parameters are assumed constant over time in the time dummy model.

No characteristics available: replace unobservable hedonic effects \(\sum_{k=1}^{K} \beta_k z_{ik} \) by item-specific fixed values \(\gamma_i \).

Fixed effects or time-product dummy model

\[
\ln p_i^t = \alpha + \sum_{t=1}^{T} \delta^t D_i^t + \sum_{i=1}^{N-1} \gamma_i D_i + \varepsilon_i^t
\]

Counterpart of Country-Product Dummy (CPD) model for cross-country comparisons
TPD indexes

TPD index can be written as

\[P_{TPD}^{0t} = \exp(\hat{\delta}^t) = \frac{\prod_{i \in S^t} (p_i^t)^{1/N^t}}{\prod_{i \in S^0} (p_i^0)^{1/N^0}} \exp[\hat{\gamma}^0 - \hat{\gamma}^t] \]

or, because it is transitive, in chained form as

\[P_{TPD}^{0t} = \prod_{\tau=1}^{t} \frac{\prod_{i \in S^\tau} (p_i^\tau)^{1/N^\tau}}{\prod_{i \in S^{\tau-1}} (p_i^{\tau-1})^{1/N^{\tau-1}}} \exp[\hat{\gamma}^{\tau-1} - \hat{\gamma}^\tau] \]
Unmatched items and the TPD index

How are unmatched items treated in the TPD index?

Chain link of TPD index can be written as the product of the adjacent-period matched-model Jevons index and the effects of new items and disappearing items:

\[
\frac{P_{TPD}^{0,t}}{P_{TPD}^{0,t-1}} = \prod_{i \in S_{M}^{t-1,t}} \left(\frac{p_i^t}{p_i^{t-1}} \right)^\frac{1}{N_{M}^{t-1,t}} \left[\prod_{i \in S_{N}^{t-1,t}} \left(\frac{p_i^t}{\exp(\hat{\gamma}_i)} \right)^\frac{1}{N_{N}^{t-1,t}} \right] f_{N}^{t-1,t} \left[\prod_{i \in S_{D}^{t-1,t}} \left(\frac{p_i^{t-1}}{\exp(\hat{\gamma}_i)} \right)^\frac{1}{N_{D}^{t-1,t}} \right] - f_{D}^{t-1,t}
\]
Unmatched items and the TPD index

Take clothing, for example. Prices typically decline over time, so a chained-matched model index will have a downward trend.

If TPD method would work, i.e. if fixed effects approximate hedonic effects well, then the unmatched items are likely to counter this downward trend – average quality-adjusted prices of new (disappearing) items likely above (below) average quality-adjusted prices of matched items.

But does the TPD method really account for new and disappearing items?
Unmatched items and the TPD index

No, it doesn’t.

• Items which are observed only once during the whole sample period – are zeroed out: they are effectively dropped from the estimation.

• Thus, it still is a matched-model approach and does not adjust for quality change, even though ….

• …. the TPD index differs from the chained matched model Jevons as items which are ‘new’ or ‘disappearing’ in period-on-period comparisons are often observed multiple times during the sample period.
A comparison with the GEKS-Jevons index

Ivancic, Diewert and Fox (2011) and others adapted the GEKS method for making transitive price comparisons across countries to price comparisons across time.

\[
P_{GEKS}^{0t} = \prod_{l=0}^{T} \left(P_{0l} \times P_{lt} \right)^{\frac{1}{T+1}}
\]

\(P_{0l} \) and \(P_{lt} \) are bilateral price indexes between 0 and \(l \), and \(l \) and \(t \); \(l (l=0,\ldots,T) \) is the link period.

Online data: no quantity information. Use of bilateral Jevons indexes (rather than Fisher indexes).
A comparison with the GEKS-Jevons index

Some findings:

• If some (unknown) time dummy hedonic model describes the data well, then TPD is a (smoothed) approximation of the matched-model GEKS-Jevons – the two methods essentially aim at the same index number formula.

• Not surprising: both methods use the exact same information, i.e. the prices all matches across the sample period or window $0,\ldots,T$.

• Trends may differ if e.g. the ‘true’ characteristics parameters change over time.

• TPD method probably easier to estimate.
Issues with daily online data and daily indexes

Rolling window approach can overcome revisions problem. Window length: no longer than maximum period items are offered for sale. Depends on

- type of product;
- market circumstances;
- policy of assigning and changing item identifiers.

In practice: items identified by article numbers (EANs in scanner data) or web IDs (online data). These identifiers may be too detailed – similar items having different IDs.
Issues with daily online data and daily indexes

Potential problems:
• item churn overestimated;
• matched-model indexes based on fewer matches than desirable;
• matched-model methods, including TPD (and GEKS), miss hidden price changes.

Issues with web scraping data
• online prices different from transaction prices;
• representativity of online data;
• changes made to website;
Issues with daily online data and daily indexes

- treatment of sales versus regular prices - daily ‘trajectory’ in offer prices does not necessarily reflect correct trend from the average consumer’s point of view due to promotional sales;
- volatility of daily price indexes;
- monthly unit values not possible with online data.

Note: scanner data might not be an ideal source for online purchases, particularly on clothing.
Potential problem: registration of goods which are returned by customers.
Empirical results

Main goal:
to illustrate that different types of indexes - TPD, chained matched-model Jevons and GEKS-Jevons - can have different trends and can be highly volatile when constructed at a daily frequency.

Data set
• daily prices extracted from website of Dutch online store - no physical store so only (potential) online purchases
• women’s T-shirts; men’s watches, kitchen appliances
• 6 October 2012 – 8 April 2013 (12 August 2013)
• TPD above chained Jevons, as expected
• Substantial downward bias – too detailed identifiers
• Extremely volatile; trend in average prices more plausible
Daily indexes; men’s watches; small data set

- Heterogeneity – erratic behavior average prices
- TPD and chained Jevons very similar and reasonable
• Compositional change early November 2012
Daily TPD indexes; women’s T-shirts; large data set

- Confirms downward bias of TPD index (decline of almost 60% within 10 months!)
- Comparison with small data set: revisions very small
GEKS Jevons does not fall as fast as TPD
Only small differences between the two samples
Drawing samples does not change the picture
‘Weekly’ indexes; men’s watches; large data set

- TPD and GEKS-Jevons very similar, as expected
‘Weekly’ indexes; kitchen appliances; large data set

- TPD and GEKS-Jevons very similar, as expected
Conclusions

• While fixed effects in TPD model can be viewed as item-specific hedonic effects,
• this does not mean that TPD produces a quality-adjusted index.
• Where quality change is unimportant: multilateral indexes (TPD, GEKS) preferred over period-on-period chained indexes.
• Regression-based TPD will be easier to estimate than GEKS.
• Potential problem: hidden price changes - identification issue.
• Weighted TPD or GEKS if quantity data is available, but
• quantity data for online purchases might be unreliable.